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1 Overview

In the last lecture we prove the adjunction formula and varies generalization(including adjunction
formula for normal variety, subadjunction formula for DLT pair, and Kawamata’s subadjunction
formula).

In this lecture we begin to discuss the intersection number and numerical geometry. The main
theorem that we will prove in this lecture is the Nakai-Moishezon-Kleiman’s ampleness criterion.

2 The intersection number

We begin by defining the intersection number. Let X be an algebraic variety, D1, · · · , Dr Cartier
divisors on X,F a coherent OX -Module such that Supp F is complete of r-dimension. Then there
exists a polynomial P (z1, · · · , zr) of degree ≤ n with coefficients in Q such that

P (m1, · · · ,mr)

= χ (X,F ⊗OX
O (m1D1 + · · ·+mrDr))

:=
∑
i

(−1)i dimH i (X,F ⊗ O (m1D1,+ · · ·+mrDr)) ,

for every m1, · · · ,mr ∈ Z

Definition 1. When r ≥ n, the coefficient of the monomial z1 · · · zr in P (z1, · · · , zr) is called the
intersection number of D1, · · · , Dr with respect to F and denoted by (D1, · · · , Dr; F ).

In particular, if F = OY for a complete closed subvariety Y ⊂ X, we denote (D1, · · · , Dr; F ) by
(D1, · · · , Dr;Y ). If, moreover, Y = X, we denote it simply by (D1, · · · , Dr). If Di all coincide with
D, then we denote it by Dr.

The second definition is more comprehensive.

Definition 2. Let D1, . . . , Dk be Cartier divisor, and V be subvarierty of dimension k then we can
define the intersection numer

(D1, . . . , Dk, V ) := (c1(D1) ∪ c1(D2) . . . ∪ c1(Dk)) · [V ],

where [V ] ∈ H2k(X) is the fundamental calss associated to V , and · is the perfect bilinear pairing

H2k(X,Z)×H2k(X,Z)→ Z

we can use wedge product in deRham cohomology in replace of the cup product in singular coho-
mology when X is a complex manifold.
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3 Neron-Severi group and Picard group

In this section I will define the Neron-Severi group N1(X) and Picard group.

I will prove in this section that Neron-Severi group is a finite rank free Abelian group and show
the duality between the Neron-Severi group and the group of numerical equivalence class of curves
N1(X).

Definition 3. Let X be a projective(or complete) scheme over C, The Néron-Severi group of X is
the group

N1(X) = Div(X)/Num(X),

of numerical equivalence classes of (Cartier) divisors on X. Where Num(X) is the subgroup of the
Cartier divisor group that D ≡ 0.

Néron-Severi group is indeed finite rank and torsion free:

Theorem 4. The Neron-Severi group N1(X) is a free abelian group of finite rank.

Proof. A divisor D on X determines a cohomology class

[D]hom = c1 (OX(D)) ∈ H2(X; Z),

and if [D]hom = 0 then evidently D is numerically trivial. Therefore the group Hom(X) of coho-
mologically trivial Cartier divisors is a subgroup of Num(X). It follows that N1(X) is a quotient
of a subgroup of H2(X; Z), and in particular is finitely generated. For torsion freness one needs to
use Corollary 1.4.38 in Lazarsfeld’s book.

If we define Z1(X) = {
∑n

i aiCi | ai ∈ Z} and two elements C1 ≡ C2 ∈ Z1(X) iff C1 ·D = C2 ·D
for all prime divisor D, and N1(X) = Z1(X)/ ≡. Then we can induce from the intersection pairing
Div⊗Z1(X)→ Z a perfect pairing

N1(X)×N1(X)→ Z

.

Since N1(X) is finite rank free abelian group, one has

dimN1(X)R = dimN1(X)R <∞

Therefore using intersection number we reduce the infinite dimension space Div(X)R into a finite
dimension vector space N1(X). Mori realized that one can use the cone geometry in this finite
dimension vector space N1(X)R to get some information about a given variety. To do this we need
the concept of positivities.

4 Nakai-Moishezon-Kleiman’s ampleness criterion

Here is the main theorem that will be proved in today’s lecture is
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Theorem 5. Let L = O(D) be a line bundle on a projective variety X. Then L is ample if and
only if ∫

V
c1(L)dim(V ) > 0

for every positive-dimensional irreducible subvariety V ⊆ X.

Before proving this result, let me make few remarks: Campana and Peternell [1] extend to result
to R-Cartier divisor on the projective scheme, In a groundbreaking paper, Demailly and Paun [2],
proved a vast generalization of this result, which holds for all real (1, 1) classes on a compact Kähler
manifold. Recently Fujino and Miyamoto [3] generalize the result of Campana and Peternell to the
complete schemes.

Proof. Suppose that D is ample.

Then mD is very ample for some m > 0. Let φ : X −→ PN be the corresponding embedding. Then
mD = φ∗H, where H is a hyperplane in PN . Then

(mD)k · V = Hk · φ(V ) > 0,

where the first equality due to projection formula, since intersecting φ(V ) with Hk corresponds to
intersecting V with a linear space of dimension N − k. And this is the degree of φ(V ) in projective
space.

Now we prove the converse direction: assuming the positivity of the intersection numbers appearing
in the Theorem, we prove that O(D) is ample. The result being clear if dimX = 1, indeed it follows
from the Riemann-Roch theorem(For the details, we refer the reader to Qing Liu’s book Proposition
5.5).

we put n = dimX and assume inductively that the Theorem is known for all schemes of dimension
≤ n− 1. It is convenient at this point to switch to additive notation, so write L = OX(D) for some
divisor D on X.

We assert first that
H0 (X,OX(mD)) 6= 0 for m� 0.

In fact, asymptotic Riemann-Roch gives to begin with that

χ (X,OX(mD)) = mn (Dn)

n!
+O

(
mn−1) ,

and (Dn) =
∫
X c1(L)n > 0 by assumption. Now write D ∼ A − B as a difference of very ample

effective divisors A and B (Every Cartier divisor on projective scheme can be written as difference
of two very ample divisors which are linear equivalent to some effective divisor). We have two exact
sequences:

0 −→ OX(mD −B)
·A−→ OX((m+ 1)D) −→ OA((m+ 1)D) −→ 0

0 −→ OX(mD −B)
·B−→ OX(mD) −→ OB(mD) −→ 0

By induction, OA(D) and OB(D) are ample. Consequently the higher cohomology of each of the
two sheaves on the right vanishes when m� 0. So we find that if m� 0, then

H i (X,OX(mD)) = H i (X,OX(mD −B)) = H i (X,OX((m+ 1)D))
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for i ≥ 2. In other words, if i ≥ 2 then the dimensions hi (X,OX(mD)) are eventually constant.
Therefore

χ (X,OX(mD)) = h0 (X,OX(mD))− h1 (X,OX(mD)) + C

for some constant C and m � 0. So it follows that H0 (X,OX(mD)) is non-vanishing when m is
sufficiently large, as asserted. Since D is ample if and only if mD is, there is no loss in generality
in replacing D by mD. Therefore we henceforth suppose that D is effective.

We next prove that OX(mD) is generated by its global sections if m � 0. As D is assumed
to be effective this is evidently true away from Supp(D), indeed one has OX,x(mD) ∼= OX,x ,
since for effective divisor D ≥ 0 there is a inclusion of sheaf OX ↪→ OX(mD)for n ≥ 1, therefore
H0(X,O(mD)) ⊃ H0(X,OX). Which shows the globally generated of OX(mD) at x /∈ D.

so the issue is to show that no point of D is a base point of the linear series |OX(mD)|. Consider
to this end the exact sequence

0 −→ OX((m− 1)D)
·D−→ OX(mD) −→ OD(mD) −→ 0

As before, OD(D) is ample by induction. ConsequentlyOD(mD) is globally generated andH1 (X,OD(mD)) =
0 for m� 0. It then follows that the natural homomorphism

H1 (X,OX((m− 1)D)) −→ H1 (X,OX(mD))

is surjective for every m � 0. The spaces in question being finite dimensional, the maps must
actually be isomorphisms for sufficiently large m. Therefore the restriction mappings

H0 (X,OX(mD)) −→ H0 (X,OD(mD))

are surjective for m� 0(that is we can lift the section). But since OD(mD) is globally generated,
it follows that no point of Supp(D) is a base-point of |mD|, as required.

Finally, the amplitude of OX(mD). Since OX(mD) is base point free, there is a morphism

φ|mD| : X → PN

such that mD = φ∗H for some hyperplane divisor. I claim this morphism is finite, for if it contracts
some curves then by the projection formula one has φ∗H ·C = 0, on the other hand one has by the
assumption one has mD · C > 0 contradiction. Therefore mD must be an ample divisor.

References

[1] F. Campana, T. Peternell, Algebraicity of the ample cone of projective varieties, J. Reine
Angew. Math. 407 (1990) 160–166.

[2] Demailly, Jean-Pierre and Paun, Mihai, Numerical characterization of the Kähler cone of a
compact Kähler manifold, Annals of mathematics. (2004) 1247–1274.

[3] Fujino, Osamu and Miyamoto, Keisuke Nakai–Moishezon ampleness criterion for real line
bundles, Mathematische Annalen. 385 (2023) 459–470.

4


