
Birational geometry reading seminars Fall 2023

Lecture 5 — 11,2, 2023

Scribe: Yi Li

1 Overview

Today we continue the discussion of Birkar’s lecture notes on birational geometry. Last time we
discuss the intersection number, NS group, and Nakai-Moishezon criteron. One important theorem
that haven’t been proved last time is the Kleiman’s ampleness criterion. After that we will study
the relation between semiample divisor and contraction morphism, we will show that semiample
divisor will induce a contraction morphism, and conversely a contraction morphism will pull back
an ample divisor to a semiample divisor. Finally, we will provides some examples about the Mori
cone.

2 About Q,R-coefficient ampleness and nefness

2.1 Ample Q divisors

Recall the definition of Q and R-coefficient nefness and ampleness

Definition 1. A Q-Cartier-divisorD ∈ DivQ(X) is ample if any one of the following three equiv-
alent conditions is satisfied:

(i)D is of the form D =
∑
ciAi where ci > 0 is a positive rational number and Ai is an ample

Cartier divisor.

(ii) There is a positive integer r > 0 such that r ·D is integral and ample.

(iii) D satisfies the statement of Nakai’s criterion, i.e.(
DdimV · V

)
> 0

for every irreducible subvariety V ⊆ X of positive dimension.

Let’s prove the equivalence

Proof. (i) implies (ii) since ci = mi/ni then taking out the common factor ni the sum become

1

n1n2 . . . nk

∑
miAi

with
∑
miAi being ample divisor.

(ii) implies (i) if r ·D is integral ample then 1/r(r ·D) is the form that we want.
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(ii) implies (iii) since r ·D is integral ample by the Nakai-criterion for the integral divisor we have

(r ·D)dimV · V > 0 =⇒ DdimV · V > 0

(iii) implies (ii) again if DdimV · V > 0 since D is a Q-divisor rD is a integral divisor, therefore by
linearity:

(rD)dimV · V = rdimDdimV · V > 0

2.2 Ample R-divisors

For the R-coefficient Cartier divisor however we only have the following definition

Definition 2. Assume that X is complete. An R-divisor D on X is ample if it can be expressed
as a finite sum

D =
∑

ciAi

where ci > 0 is a positive real number and Ai is an ample Cartier divisor.

2.3 Nef Q(or R) divisors

For the Q and R nef divisor, the standard definition are slightly different.

Definition 3. Let X be a complete variety or scheme. A line bundle L on X is numerically
effective or nef if ∫

C
c1(L) ≥ 0

for every irreducible curve C ⊆ X. Similarly, a Cartier divisor D on X (with Z,Q or R coefficients)
is nef if

(D · C) ≥ 0

for all irreducible curves C ⊂ X.

It’s not clear whether the standard definition for nef R-divisor is equivalent to being positive linear
combination of integral nef divisors.

3 Kleimann’s ampleness criterion

Let’s first introduct the Kleiman’s ampleness criterion

Theorem 4. Let X be a normal projective, let D be a Q-Cartier divisor(or R-Cartier divisor) on
X then

D is ample ⇐⇒ D · α > 0 for any α ∈ NE(X)− {0}
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Equivalently, choose any norm— on N1(X)R, and denote by

S = {γ ∈ N1(X)R | ‖γ‖ = 1}

the ”unit sphere” of classes in N1(X)R of length 1 . Then D is ample if and only if

(NE(X) ∩ S) ⊆ (D>0 ∩ S)

The equivalence is a direct consequence of definition, I will omit it. Also, the following proof is for
the R-Cartier divisors, for the Q-Cartier divisors the proof is essentially the same.

Proof. We assume that the condition holds, and show that D is ample.

To this end, consider the linear functional φD : N1(X)R −→ R determined by intersection with D.
Then φD(γ) > 0 for all γ ∈ (NE(X)∩S). But NE(X)∩S is compact, and therefore φD is bounded
away from zero on this set. In other words, there exists a positive real number ε > 0 such that

φD(γ) ≥ ε for all γ ∈ NE(X) ∩ S

Thus
(D · C) ≥ ε · ‖C‖

for every irreducible curve C ⊆ X. On the other hand, choose ample divisors H1, . . . ,Hr on X
whose classes form a basis of N1(X)R. Then ‖ · ‖ is equivalent to the ”taxicab” norm(the reason
we require Hi to be the basis of N1(X)R is that it makes the definition satisfies the axim of a norm
on a vector space)

‖γ‖taxi =
∑
|(Hi · γ)| .

Setting H =
∑
Hi it therefore follows from (∗) that for suitable ε′ > 0 :

(D · C) ≥ ε′ · (H · C)

for every irreducible curve C ⊆ X, which will clearly implies the ampleness of D.

Conversely, if D is ample, we have

D · γ > 0, ∀γ ∈ NE(X) \ {0}

(in this step the ample implies the intersection number being positive is clear for both Q and R
divisors, what is non trivial is the converse implication in the Nakai-Moishezon)

therefore taking closure D · γ ≥ 0, ∀γ ∈ NE(X) \ {0} if γ ·D = 0 since γ is not numerically zero
element in the Mori cone, there exist some divisor M · γ < 0 then for sufficient large N we have
ND +M is ample therefore

0 ≤ (M +ND) · γ = M · γ < 0

a contradiction. This finish the proof of the theorem.

Since needed in what follows, we prove the relative version Kleiman’s ampleness criterion
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Theorem 5. Let π : X → Y be a projective morphism between complex algebraic varieties, Then
we have

Amp(X/Y ) =
{
ζ ∈ N1(X/Y )R | ζ > 0 on NE(X/Y )\{0}

}
Proof. Since being ample is a open condition, to see the ample cone contains in the RHS is the
same as the proof for the absolute version.

Conversely, if ζ ∈ RHS we want to show it’s ample on each fiber Xs (and therefore it’s relative
ample).

Indeed Γ ∈ NE(Xs) ⊂ N1(Xs) is not numerical trival then Γ ∈ NE(X/Y ) is not numerical trivial
also. To prove this, we use the absolute version Kleiman’s ampleness criterion. Choose an relative
ample divisor A, it’s ample on Xs by definition, therefore A ·Xs Γ = A ·X Γ > 0.

Then by our assumption ζ · Γ > 0 for any Γ ∈ NE(X/Y )\{0} will implies ζ · Γ > 0 for any
Γ ∈ NE(Xs)\{0}.

4 Contraction morphism

We will introduce the semiample fibration theorem in this section

Theorem 6. Let X be a normal projective variety, and let L be a semiample bundle on X. Then
(1) There is an algebraic fibre space(contraction)

φ : X −→ Y

(2) Having the property that for any sufficiently large integer k ∈M(X,L):

Yk = Y and φk = φ.

where (3) Furthermolre there is an ample line bundle A on Y such that f∗A = L⊗f , where f = f(L)
is the exponent of M(X,L). More roughly speaking, one has

L ∼Q f
∗A′

for some ample Q-Cartier divisor A′.

For the proof, we refer the reader to Lazarsfeld Theorem 2.1.26.

Conversely given a contraction morphism f : Y → X, we can define a semiample divisor by pull
back some ample divisor on X, say A = f∗H. Since pull back of semiample divisor is semiample,
A is semiample.

For this contraction morphism, a curve C ⊂ Y is contracted by f iff the intersection A ·C = 0, we
denote A⊥ = {γ ∈ N1(X)R | γ ·A = 0} and FA = A⊥ ∩N1(X)R

Proof. If C is contracted to a point, by definition f∗(C) = 0 by the projection formula f∗(C) ·H =
A · C = 0.

Conversely if A ·C = 0 it implies H · f∗C = 0 if C is not contracted by f , f∗C should has positive
intersection with H.
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We claim the following result

Claim 7. A is numerical trivial on some extreme face NE(f), which is the subcone that generated
by the curves being contracted by f .

Proof. And by the observation above, we have A is numerical trivial on NE(f).

Only needs to show that NE(f) is extreme face. Let a =
∑
ai [Ci] and a′ =

∑
a′j

[
C ′j

]
be elements of

NE(X), where ai and a′j are positive real numbers. If a+a′ is in NE(π), there exists a decomposition∑
ai [Ci] +

∑
a′j
[
C ′j
]

=
∑

a′′k
[
C ′′k
]

where the C ′′k are irreducible curves contracted by π and the a′′k are positive. Applying π∗, we get∑
aiπ∗ [Ci]+

∑
a′jπ∗

[
C ′j

]
= 0 in N1(Y )R. Since Y is projective, the Ci and C ′j must be contracted

by π hence a and a′ are in NE(π). This proves the claim.

If we take the closure it becomes the extreme face of Mori cone

Theorem 8. If taking closure we have

NE(f) = NE(X) ∩A⊥ = FA

therefore the closure of cone of curves being contracted will be a extreme face of the Mori cone.

Proof. By previous discussion we have

NE(f) ⊂ FA

if the inclusion is strict, by basic cone geometry there exist a linear functional seperate then:

There exist ` ∈ (N1(X)R)∨ such that it’s strict positive on NE(π) \ {0} but has some z ∈ FA such
that `(z) < 0.

Recall that we have N1(X)∨R
∼= N1(X)R there exist a R divisor D realize `, by peturbing a little

bit, we can assume D is rational coefficient, therefore it can be scaled to integral coefficient divisor.

Therefore by the Kleiman’s ampleness criterion we have D is relative ample. Then by the lemma
below, for sufficient large m� 0 we have mA+D is absolute ample, therefore again by Kleiman’s
criterion, we have

0 < (mA+D) · z = D · z < 0

contradiction.

Let’s prove the lemma used in the theorem above

Lemma 9. Let f : Y → X being contraction morphism, assume D is a relative ample divisor on
Y , and H is an ample divisor on X then for sufficient large m� 0 we have mf∗H+D being ample
divisor.

For the proof we refer the reader to https://stacks.math.columbia.edu/tag/01VG
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Theorem 10. Let X be a normal projective surface and C an irreducible curve which is Q-Cartier
as a divisor. If C2 < 0, then C generates an extremal ray of NE(X). But if C2 > 0, then the class
of C cannot belong to any extremal ray unless ρ(X) = 1.

Proof. Proof. First assume that C2 < 0. Let C be the subcone of NE(X) consisting of those
classes α for which C · α ≥ 0 and let H be the hyperplane in N1(X) where C is numerically zero.
In particular, if C ′ is any curve other than C, then the class of C ′ is in C. Moreover, NE(X) is
nothing but the convex hull of [C] and C. Therefore, [C] generates an extremal ray of NE(X) as
[C] is on one side of H and C on the opposite side.

Now the second statement: assume that IC is Cartier and let f : Y → X be a resolution of
singularities. Then,

(
f∗C2

)
> 0 and the RiemannRoch theorem shows that h0 (mIf∗C) grows like

m2 hence the same holds for h0(mIC). Pick a general very ample divisor A and consider the exact
sequence

0→ H0(X,mIC −A)→ H0(X,mIC)→ H0 (A, mIC|A)

Since A is a smooth curve, h0 (A, mIC|A) grows at most like m which shows that h0(X,mIC −A)
grows like m2 hence mIC ∼ A + C ′ for some m > 0 and some effective divisor C ′. In particular,
the classes of both A and C ′ are in NE(X).

Therefore general ample divisor A lies in same ray generated by C, on the other hand, ample
divisors can form a basis of N1(X)R if general ample divisor lies in the ray, the basis of N1(X)R
lies in it.

This implies that the class of C cannot generate any extremal ray unless NE(X) is just a half-line
and ρ(X) = 1.

5 Examples

In the final part of today’s lecture, we provide some examples that Mori cone can be computed
explicitly.

5.1 Smooth projective curves

We claim the Picard group of smooth projective curve is direct sum of the Jacobian of the curve
with Z.

Proof. Conisder the following exact sequence

0→ Pic0(X)→ Pic(X)→ H2(X,Z)→ 0

since for smooth projective curve H2(X,Z) is free and isomorphic to Z therefore the sequence of Z
module split, that is

Pic(X) = Pic0(X)⊕ Z

as a consequence the Picard number being 1, and the Mori cone is a half line.
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5.2 Projective bundles

Projective bundle is standard model for Mori-fibre space( fiber type contraction)

We have the following projective bundle formula

Theorem 11. Let Y be a smooth projective variety over C, and E be a locally free sheaf on X, it
will induce a projective bundle f : P(E)→ Y . Then any divisor D ∈ Div(P(E)) has the form

D ∼ f∗G+mH

for some G ∈ Div(Y ) and H be the hyperplane divisor on P(E). In particular Pic(P(E)) = Pic(Y )⊕
Z.

By our previous discussion if two curves C,C ′ lies in the fibers, the interestion number

C ·D = mCḢ, C ′ ·D = mC ′·

therefore the ratio between C ·D and C ′ ·D does not change when D varies. Therefore they lies in
the same numerical class. That is NE(f) is a extreme ray in NE(X) if we take closure in N1(X)R,

the extreme ray still is itself, therefore NE(f) = NE(f) which is now a extreme ray of the Mori
cone NE(X), therefore the projective bundle always has a extreme ray coming from the fiber that
it contracted.

In the rest of this section, we will list some concrete examples of projective bundles.

(1)P1 bundle over the rational curve P1 (Hirzebruch surface)

Recall that P1 bundles coming from projectivization of rank 2 vector bundle. In this case the Picard
number is 2, by Grotendieck classification theorem for vector bundles, it has the form O(a)⊕O(b)
we can normalize it so that the P1 bundle over P1 always has the form P(O ⊕O(−n)) which is by
definition the Hirzebruch surface Fn(since the fiber of Hirzebruch surface are rational curves this is
a standard example of Mori fibre space). By the theory of algebraic surface there is a section e on
Fn with self-intersection number −n.

In this case the Mori cone has two extreme ray, one generated by the rays contained in the fibers,
another one is generated by e.

Proof. Since it has Picard number 2 by theorem 9, we claim the cone of curves NE(X) is already
a closed cone.

By theorem 6, the ray generated by curves in the fibers is extreme for NE(X). Since e2 = −n by
theorem it’s extreme ray for the Mori cone, therefore in particular it will extreme for NE(X). They
are not the same extreme ray for e · C = 1 and e2 = −n for the curve C lies in the fibers.
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(2)Projective bundle over a curve with higher genus(Mumford example)

There is a curve C of genus at least 2 and a locally free sheaf E of rank 2 on C such that the divisor
D corresponding to the invertible sheaf OP(E)(1) is strictly nef (i.e. positively intersects every curve
on X = P(E) ) but not ample.

As we have shown, D is numerically trivial on some extremal face of NE(X). (that is )

Since ρ(X) = 2 and since D is not numerically trivial, NE(X) has exactly two extremal rays and
D is trivial on one of them, say R1. Therefore, since D is strictly nef, R1 does not contain the class
of any curve on X. The other extremal ray R2 is generated by the curves in the fibres of X → C.

5.3 Blowing ups

Blowing ups is standard model for divisorial contraction.

5.4 Blowing up points on P2

Blowing up points on P2 produce many interesting examples in birational geometry.

Blowing up 1 point on P2

Blowing up 1 point on P2 has a projective bundle structure. The picture below shows the geometric
intuition:

Figure 1:

We can notice from the picture that it has a projective bundle structure by contracting the strict
transform of the lines passing through p on Blp(P2).
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And as we have discussed in above the fibers of the projective bundle provides an extreme ray of
the Mori cone, on the other hand the exceptional divisor contracted by the blowing up provides
another extreme ray for NE(X) since taking closure does not change the ray, it’s also the extreme
ray for NE(X).

Blowing up 6 points on P2 that not lies on a conic

Blowing up 6 points that not lies on a conic are correspond to the cubic surface in P2 (which is
therefore Fano surface, we will see later in lecture about Cone theorem that for Fano variety the
extreme faces of Mori cone are finite).

Indeed in this example it has 27 lines on it, all of them are (-1) curves, it has 7 extreme face.

On interesting approach to counting the number of lines on the cubic surface is something called
Schubert calculus.

More explicit calculations show that N1(X) ' R7 and that NE(X) has no more extremal rays.

Blowing up 9 points on P2(Mukai example)

Finally, there are surfaces X which have infinitely many -1 -curves. So, they have infinitely many
extreml rays. An example of such a surface is the blow up of the projective plane at nine points
which are the base points of a general pencil of cubics.
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