Albanese varieties and Albanese mappings Fall 2025 Note I.2 — 22, 09, 2025 (draft version) $$Yi \ Li$$ The aim of this note is try to give an introduction of Albanese varieties and Albanese mapping with varies applications. ### Contents | 1 | A brief introduction to Albanese Varieties | 1 | |---|---|---| | 2 | A brief introduction to Albanese mappings | 3 | | 3 | Conditions for Albanese mapping to be fibration | 4 | | 4 | Applications of Albanese Fibration | 4 | | | 4.1 Albanese mapping in Iitaka conjecture | 4 | | | 4.2 Albanese mapping in the classification problems | 4 | ### 1 A brief introduction to Albanese Varieties Let us first construct the Albanese variety. To do this, we need the following proposition. **Proposition 1.** Let X be a compact Kähler manifold, with the Kähler form ω . (1) We have the following well defined map $$\varphi: H_1(X, \mathbb{Z}) \to (H^0(X, \Omega_X^1))^{\vee}, \quad [\gamma] \mapsto (\alpha \mapsto \int_{\gamma} \alpha).$$ (2) The image of $H_1(X,\mathbb{Z})$ forms a lattice in $(H^0(X,\Omega_X^1))^{\vee}$, hence the quotient is a complex torus of dimension equals to the dim $H^0(X,\Omega_X^1)$. **Remark 2** (Definition of lattice). Let V denote a complex vector space of dimension g. A lattice in V is by definition a discrete subgroup of maximal rank in V. It is a free abelian group of rank 2g. That is $$\dim_{\mathbb{C}} V = g$$, $\operatorname{rk} \Lambda = 2g$. *Proof of (1).* Let (X, ω) be a compact Kähler manifold, by Lemma 3, given a holomorphic p-forms α , it is always closed. On the other hand, if two class $[\gamma] = [\gamma'] \in H_1(X, \mathbb{Z})$, then there exists a singular 2-chain such that $$\gamma - \gamma' = \partial S.$$ In particular, by the Stoke's formula, $$\int_{\gamma - \gamma'} \alpha = \int_{\partial S} \alpha = \int_{S} d\alpha = 0.$$ Thus it's independent of choice of representative. Proof of (2). To show that Alb(X) is a complex torus, we need to prove that $H_1(X,\mathbb{Z})$ forms a lattice in $(H^0(X,\Omega_X^1))^\vee$. The idea is to use the fact that the natural map $$H^{2n-1}(X,\mathbb{Z}) \to H^{2n-1}(X,\mathbb{C})$$ has image a lattice (since, by the universal coefficient theorem, tensoring with \mathbb{Q} kills torsion). We then apply Serre duality (SD) and Poincaré duality (PD), which gives the following commutative diagram. $$H^{0}(X, \Omega_{X}^{1})^{\vee} \stackrel{\stackrel{\text{SD}}{\simeq}}{\longleftarrow} H^{n}(X, \Omega_{X}^{n-1})$$ $$\downarrow^{\varphi} \qquad \qquad \uparrow^{p}$$ $$H_{1}(X, \mathbb{Z}) \xrightarrow{\stackrel{\text{PD}}{\sim}} H^{2n-1}(X, \mathbb{Z})$$ Where p is the composition $$p: H^{2n-1}(X, \mathbb{Z}) \to H^{2n-1}(X, \mathbb{C}) \to H^{n-1, n}(X)$$ whose image is a lattice (since tensoring with \mathbb{C} eliminate torsion). Note that the image of φ can be identified with image of p, since by definition of PD, we have $$\int_X \omega \wedge PD([\gamma]) = \int_{\gamma} \omega.$$ While by definition SD, we have $$SD(PD([\gamma]))(\omega) := \int PD([\gamma]) \wedge \omega = \int_{\gamma} \omega = \varphi([\gamma])(\omega).$$ And hence image of φ is also a lattice. **Lemma 3.** Let X be a compact Kähler manifold with a Kähler metric. Let $\alpha \in H^0(X, \Omega_X^p)$ be a holomorphic p-form, then α is always closed. *Proof.* by definition we have $\bar{\partial}\alpha = 0$, on the other hand, by type reason, we know that $\bar{\partial}^*\alpha = 0$ as well, thus $$\Delta_{\bar{\partial}}\alpha = 0 \implies \Delta_{\partial}\alpha = 0.$$ (by Kähler identity). And consequently, $$(\partial \partial^* \alpha + \partial^* \partial \alpha, \alpha) = \|\partial \alpha\|^2 + \|\partial^* \alpha\|^2 = 0 \implies \partial \alpha = 0.$$ **Definition 4** (Albanese variety). Let X be a compact Kähler manifold (or more generally a compact complex manifold). We define the complex torus $$Alb(X) = (H^0(X, \Omega_X^1))^{\vee} / H_1(X, \mathbb{Z})$$ to be the Albanese variety associated to X, which is a complex torus. **Remark 5.** For the readers who are interested in the more general setting for any compact complex manifold, please refer to [Uen75, Theorem 9.7] or [GPR94, Theorem 3.27]. **Theorem 6** (Duality Between Albanese variety and Picard variety, [Lan23, Proposition 5.2.6]). Let X be a projective manifold, then the Picard variety is dual to the Albanese variety $$\operatorname{Pic}^0(X) = \widehat{\operatorname{Alb}(X)}$$ Proof. \Box When X is projective, we can show that Albanese variety is an Abelian variety. **Theorem 7.** Let X be a projective manifold, Then $Pic^0(X)$ and hence Albanese variety is an Abelian variety. *Proof.* Only needs to show the projectivity of the Picard variety $\operatorname{Pic}^0(X)$, then since dual of Abelian variety is Abelian $\operatorname{Alb}(X)$ will be an Abelian variety as well. Note that when X is Moishezon manifold, the Albanese variety is still an Abelian variety. In general however it's only a complex torus. **Proposition 8** ([Uen75, Proposition 9.15]). Let X be a Moishezon manifold, then the Albanese torus Alb(X) is a projective manifold. Proof. **Proposition 9** ([BS95, Lemma 2.4.1]). Let X be a normal projective variety with rational singularities, then the Albanese map is well defined. Proof. # 2 A brief introduction to Albanese mappings **Definition 10** (Albanese mapping). Let $[\omega_1], \dots, [\omega_k]$ be the basis of $H^0(X, \Omega_X^1)$. Then the representative ω_i are closed (1,0)-forms. We then define the Albanese mapping as $$\operatorname{alb}_X: X \to \operatorname{Alb}(X), \quad z \mapsto (\int_{z_0}^z \omega_1, \cdots, \int_{z_0}^z \omega_k).$$ **Proposition 11.** The Albanese mapping is well defined. *Proof.* First, by Lemma 3, the integration does not depend on the real path that we choose. Second, we need to check the linear functional does not depend on the \Box We first introduce the universal property of Albanese mapping. **Proposition 12** ([Lan23, Theorem 5.2.2]). Let $\varphi: M \to X$ be a holomorphic map into a complex torus X. There exists a unique homomorphism $\widetilde{\varphi}: \text{Alb}(M) \to X$ of complex tori such that the following diagram is commutative Proof. ### 3 Conditions for Albanese mapping to be fibration Note that in general Albanese mapping is not fibration. However when Kodaira dimension is 0, Kawamata proved the Albanese mapping is actually a fibration. Theorem 13 ([?]). ## 4 Applications of Albanese Fibration - 4.1 Albanese mapping in Iitaka conjecture - 4.2 Albanese mapping in the classification problems ## References - [BS95] Mauro C. Beltrametti and Andrew J. Sommese, The adjunction theory of complex projective varieties, De Gruyter Expositions in Mathematics, vol. 16, Walter de Gruyter & Co., Berlin, 1995. MR 1318687 - [GPR94] H. Grauert, Th. Peternell, and R. Remmert (eds.), Several complex variables. VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, Berlin, 1994, Sheaf-theoretical methods in complex analysis, A reprint of Current problems in mathematics. Fundamental directions. Vol. 74 (Russian), Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow. - [Lan23] Herbert Lange, Abelian varieties over the complex numbers—a graduate course, Grundlehren Text Editions, Springer, Cham, [2023] ©2023. [Uen75] Kenji Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, vol. Vol. 439, Springer-Verlag, Berlin-New York, 1975, Notes written in collaboration with P. Cherenack. MR 506253