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1 Overview

This aim of this note is to introduce the BDPP theorem for projective [BDPP13] and Kahler
manifold [Ou25]. Varies applications of the BDPP theorem are shown.

2 Transcendentla cone

On a compact Kéhler manifold, there may not have plently of divisors. To make sense varies
positivities, it is necessary to introduce the transcendentla cones.

3 Duality between varies cones

The following theorem shows the duality between pseudo-effective cone and movable cone on the
projective manifold.

Lemma 1. Let X be a projective manifold. Let v € N1(X) be a movable class. Then given any
prime divisor E, there exist a representative vg such that vg intersect F properly and v = vg.

Remark 2. I am not pretty sure, if the result is also true for Kahler manifold?

Proof. O

Theorem 3. Let X be a projective manifold, then the pseudo-effective cone is dual to the cone of

movable curves y

& =Mov(X) .

In other words, a divisor is pseudo-effective iff it has non-negative intersection with any movable
curves.

Remark 4. David [WN19] proved ...
Remark 5. Let us briefly sketch the idea of the proof.

Proof. Let C be a movable curve, By Lemma 1, we can choose some C’ such that C' = C’ and C’
meets the given pseudo-effective divisor properly. Hence

£ ¢ Mov(X) .
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Conversely, if the inclusion is strict then there exist some
€€ 0(E(X)), &eint(Mov(X)*).

We want to deduce contradition. Since X is projective, we can find some ample divisor H such
that & — eH still in the movable cone. So that

((é,(é)) >e, VCeMov(X).

On the other hand we can apply Fujita approximation to the class £ + tH for the ample H. And
gets
Mt - Xt — X

such that
py(§+tH) = A + E;

choose C' = u*A?_l, then apply the Asymptotic orthogonality of Fujita approximation to £ - C' and
Teissier-Hovanskii inequality to deduce an upper bound

£-C
> = >
"o

with 0; — 0 when t — 0 (here d; is a constant depend on the volume of A, since vol(§) = 0 by
Fujita approximation vol(A;) — 0 when ¢ — 0).

O]

One can generalize the duality theorem to the normal Moishezon space using standard blow up
arguement.

Theorem 6. Let X be a normal Moishezon space, then the pseudo-effective cone is dual to the
movable cone of curves.

Proof. O

Using the duality theorem, we can show that cone of nef curves coinside with the movable cone of
curves.

Theorem 7. Let X be a normal Moishezon space, then the Batyrev nef cone coinside with the
movable cone of curves.

4 Characterization of the projective uniruled manifold

The projective uniruled manifold is characterized by the pseudo-effectiveness of the canonical bun-
dle.

Lemma 8. Given a movable curve C, there exist a covering family J,.q C¢ contains C, which
covers a dense open subset of X. To be more precise, we can find a diagram
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CLX

E

with f a fibration, with fibers C; and ¢ is dominant generic finite morphism, with {C}}icg lies the
same numerical class.

Proof. O

Theorem 9 ([BDPP13, Corollary 0.3]). Let X be a projective manifold. Then X is uniruled iff
Kx is not pseudo-effectiveness.

Remark 10. One direction of the proof is easy, and can be adopted to the Kahler manifold.
The converse direction (say Ky is not pseudo-effective) implies uniruled of X is non-trivial, which
requires the Mori bend and break technique and the duality between pseudo-effective cone and
movable cone.

Remark 11. Miyaoka and Mori [MM&6] proved that a projective manifold is uniruled iff there
exist an open subset over which there exist a Kx-negative curve passing through it. For more
discussion about Miyaokao-Mori theorem (and varies properties of uniruled manifold) see my Note
15.

Proof. 1t’s sufficient to prove that if Kx is not pseudo-effective, then X is uniruled. By duality of
pseudo-effective cone and movable cone, we know that there exists a movable curve such that

Kx-C<O0.

By Lemma 8, we can produce a covering family of K x-negative irreducible curves using the movable
curve C. O

We can generalize the BDPP theorem to the singular case.

Theorem 12. Let (X, B) be a Q-factorial log pair. If Kx + B is not pseudo-effective, then X is
uniruled.

Remark 13. Rational curves on singular space is tricky. See more discussion on my notes note-9
Rational curves on Moishezon space, Kaehler varieties.

Proof. Taking the log resolution
f: X =X,
such that f*(Kx+ B) = Kx/+ B’. Since being uniruled is birational invariant, if X is not uniruled,

then so it is X’. Then by the BDPP theorem we just proved, Ky is pseudo-effective, thus Kx is
pseudo-effective. Since B is effective, Kx + B is pseudo-effective. O

We can characterize the uniruled variety using subsheaf of tangent sheaf

Theorem 14. Let X be a projective manifold, .% C Tx be a coherent subsheaf such that det % * C
Tx is not pseudo-effective, then X is uniruled.

Proof. O
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5 Proof of BDPP conjecture for Kahler manifold

Recently, [Ou25] proved the BDPP conjecture for the compact Kéhler manifold. In this section,
we will briefly introduce the result that he proved.

5.1 Algebraic integrability criteria under Kahler setting
5.2 Pseudo-effectiveness of the adjoint class
5.3 Relative Albanese reduction

5.4 Proof of BDPP conjecture for compact Kéahler manifold
6 Varies applications

6.1 Applications of duality of pseudo-effective cone and cone of movable curves
6.2 Producing rational curves using BDPP conjecture

6.3 Cone theorem using BDPP conjecture
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