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1 Overview

The aim of this note is to summarize the construction of contraction morphism for Kähler 3 folds.

2 Das-Hacon’s approach to divisorial contraction for Kähler 3-fold
MMP

In this section, we will prove the following theorem.

Theorem 1 ([DH24, Theorem 6.9]). Let (X,B) be a strong Q-factorial Kähler 3-fold KLT pair.
With the following condition holds
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1. KX +B is pseudo-effective

2. α = [KX +B + β] is nef and big class such that β is Kähler,

3. The negative extremal ray R = NA(X) ∩ α⊥ is divisorial.

Then there exists an α-trivial divisorial contraction

f : X → Z,

such that there exist some Kähler form αZ on Z such that ϕ∗(αZ) = α.

Before going to the proof let us briefly sketch the idea. We first try to prove that the null locus
Null(α) is the Moishezon surface whose smooth model is projective uniruled. We then take a DLT
modification

φ : (X ′,∆′) → (X,∆)

of the pair (X,∆ = B + (1− b)S) (note that this pair (X,∆) differs from the original pair (X,B)
and it is not a KLT pair).

We show that the DLT modification φ preserve the geometry outside the null locus Null(α). We
then run the relative Kähler MMP for (X ′,∆′) over (X,∆), which becomes the core of the proof.
Since it’s Kähler 3-fold MMP, the termination is known. So that it’s possible to produce positivity
(say KXm +∆m is nef over (X,∆)) by the termination theorem.

We need to control the divisors being contracted in the MMP.

So that the induced bimeromorphic map f : X 99K Xm is a morphism, and this is the divisorial
contraction we want.

In the final step, we will show that the base point freeness holds for the divisorial contraction, say
α as pull back of some Kähler form αZ down stairs.

2.1 The null locus is a Moishezon surface whose smooth model is projective
uniruled

In this subsection, we will proof the following lemma.

Lemma 2. In the same setting as Theorem 1. The null locus Null(α) is a irreducible Moishezon
surface, whose smooth model is projective uniruled. Such that the curves in the negative extremal
ray R covers the surface S with

R · S < 0.

Remark 3. Let us breifly sketch the idea. The class α|S , α|Sν , α|S′ play important role in this
lemma (for simplicity let us assume for now that S is a smooth surface). The idea is to try to
use that if a smooth surface is not pseudo-effective, then it’s uniruled projective surface. The non-
pseudo-effectiveness comes from some intersection number analysis. To be more precise, we will use
that S = Null(α), so that volume vol(α|S) = (α|S)2 = 0 (by definition of null locus). In particular,
the restriction α|S can not be a big class. On the other hand, we can apply adjunction to

α|S = (KX +B + β)|S .
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If the coefficient of S in B is 1, then everything is nice and we get

α|S = (KX +B′ + S + β)|S = KS +B′|S + β|S .

Since B′|S ≥ 0 and β|S Kahler, this will imply that KS can not be pseudo-effective.

However, the coefficient of S in B is not 1, we need some tricky arguement. Let ϵ small enough, so
that α− ϵω is still big. Then apply the divisorial Zariski decomposition to

α− ϵω =
∑

ciSi + P.

We restrict the class on the surface S. If Si ̸= S for all i, then

α|S = ϵω|S +
∑

ci(Si ∩ S) + P |S .

The right hand side is big, which contradict to the fact S is null locus of α. Thus there exists some
component say S1 = S. We try to make the coefficient of S in α is 1. So that we take the scaling
that

(1 +
1− b

c1
)α|S = (KX +B + β +

1− b

s1
(
∑

siSi + P ))|S .

Note that in this case, the coefficient of S in α is 1. So that we can apply the adjunction

(KX +B′ + β + S +
∑
j≥2

sjSj + P )|S = KS +B′
S + β|S +

∑
j≥2

sjSj ∩ S + P |S ,

which will imply that KS is not pseudo-effective. And by the classification theorem of complex
surfaces, we know that S is uniruled (and projective as S is assumed to be smooth).

What nice on the projective uniruled surface is that the (0,2)-Hodge number is 0, so that the
Bott-Chern class α|S can be realized as a R-divisor (which is also a R-curve on the surface). On
the other hand since α|S′ is a nef class, this will consequently define a movable curve, thus we can
apply the Beytev cone theorem, and write

α|S′ = Cϵ +
∑

ciMi

with Mi being a finite set of movable curves. Since Mi movable, if we can prove that there exist
some Mi that is α

′-trivial. Then we find a α′-trivial covering family of S.

Finally, we need to prove that R · S < 0. To do this, Batyrev cone theorem for movable curve is
applied. So that α|S = Cϵ +

∑
ajHj . We try to prove that there exist a movable curve Hk in the

component such that α ·Hk = 0 and it generates the negative extremal ray R. So that apply it to
the Zariski decomposition of α− ϵω = s1S +

∑
j≥2 sjSj + P , we get

s1Hi · S = (α− ϵω) ·Hk − (
∑

sjSj ·Hk + P |S ·Hk) < 0,

using that ω is Kähler, Hk meets Sj properly, and P |S is pseudo-effective and thus intersection
with movable curve is non-negative.

Proof. We know give a complete proof based on the idea above. Since we assume that R is divisorial,
thus the null locus Null(α) by definition is a surface, it may have multiple components, pick one of
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the component S ⊂ Null(α). Since α is big and nef, thus if ϵ sufficient small, then α − ϵω is still
big. Take the Zariski decomposition of the the class

α− ϵω = P +
∑

siSi.

We claim that the component S is actually some irreducible component of the Zariski decomposi-
tion. The proof idea is very similar to the Horing-Peternell. We restrict the Zariski decomposition
on the surface S. If we assume that S ̸= Si for any i. Then the restriction becomes

(α− ϵω)|S = P |S +
∑

siSi ∩ S,

since P is modified nef, the restriction on a irreducible divisor becomes nef. On the other hand,
since sj ≥ 0 this means the RHS is a pseudo-effective divisor. Since ϵ > 0 this means that

α|S = ϵω|S + P |S +
∑

siSi ∩ S

which is a big divisor.

On the other hand, since we assume that S ⊂ Null(α), which means that the volume∫
S
(α|S)2 = 0

(as by definition the null locus

Null(α) =
⋃

V⊂X,
∫
(α|V )dimV =0

V

,

Therefore α is not big. Which gives the contradiction.

Now we can apply the adjunction, let b = multS(B) and therefore

S =
1

s
(α− ϵω − P −

∑
j≥2

sjSj),

therefore if we if we scale α with 1+ 1−b
s then the coefficient of S will becomes 1. And we consider

the

(1+
1− b

s
)α|S = (KX+B+β+

1− b

s
(ϵω+P+sS+

∑
sjSj))|S = (KX+B′+S+β+c′ω+

∑
j≥2

sjSj)|S

then it will implies that KXS is not pseudo-effective, for otherwise. the restriction of α|S will be a
big class.

Therefore, by the classification result of surfaces, we know that S is a uniruled surface, such that
the plurigenera will vanish. In particular, it’s a smooth projective uniruled surface.

Our next goal is to prove that the surface S is covered by the α-trivial rational curves. The idea
is try to find a movable curve Mi on S′ that is α-trivial. Then since push forward of movable
curve under birational morphism is still movalbe. And by the projection formula, this will define a
movable curve downstairs.
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2.2 Take minimal DLT modification

The idea is try to add the null locus S into the NKLT part of the boundary divisor (X,B+(1−b)S)
with b = multB(S).

Lemma 4. There exist a projective resolution µ : X ′ → X such that

1. (X ′,∆′) is a Q-factorial DLT pair, with ∆′ = µ−1
∗ (∆) + Ex(µ),

2. KX′ +∆′ is nef over X, and µ∗(KX +∆)− (KX′ +∆′) ≥ 0,

3. The following relation holds

KX′ +∆′ = µ∗(KX +B) + (1− b)µ−1
∗ S +

∑
ajEj ,

then aj > 0 for all j.

Remark 5. One may ask why we need to take a DLT modification? There are several reasons.

First, we will apply the Das-Hacon PLT contraction theorem in the later step, which needs some
control on the singularity.

Second, we need to control the place being contracted (which is the core of the proof).

We first take b = multS(B) and define a new divisor ∆ = B + (1 − b)S, we then take the log
resolution so that

µ : X ′ → X

with
∆′ = µ−1

∗ (∆) + Ex(µ).

Since log smooth pair with SNC divisor is DLT, under the log resolution, we have a Q-factorial
DLT pair.

So that we can run the analytic BCHM, which will terminate

X̃ 99K X ′,

such that KX′ +∆′ is relative nef over X. Therefore we have

µ∗(KX +∆)− (KX′ +∆′) ≥ 0

by negativity lemma.

On the other hand, we have (X,B) being a KLT pair.

Proof.
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2.3 Run the relative MMP

The core of the proof of Theorem 1 lies in the existence of a relative MMP in this section.

Theorem 6. Let (X ′,∆′) be the output of the Lemma 4. We can run the (KX′ +∆′)-MMP

(X ′,∆′) 99K (X1,∆1) 99K · · · 99K (Xm,∆m),

such that the following conditions hold

1. the birational contraction ϕi : X 99K Xi is α′-trivial,

2. ϕi is isomorphism over U , and
⌊
∆i

⌋
= supp(Θi),

3. KXi +∆i ≡αi Θi such that the NKLT locus
⌊
∆i

⌋
⊂ W i := Xi −Xi

U ,

4. The MMP terminate at the pair (Xm,∆m) such that any prime divisor Si in the ⌊∆m⌋ is

As usual, let us briefly sketch out the idea of the proof first.

Proof.

2.4 Control the set of divisors being contracted

What is interesting in the MMP process above is that we can have some control of the divisors
being contracted.

We first apply the nef reduction on the normalization of the surface Sν → S. Denote it ν : Sν → T ,
then given a component P ⊂ µ∗S, it’s easy to see that

We claim

Proposition 7. • If n(α|Sν ) = 0, then the MMP ϕm : X ′ 99K Xm will contract µ∗S and no
other divisors

• If n(α|Sν ) = 1, then the MMP ϕm : X ′ 99K Xm will contract S′ and those components E in
S′ +

∑
Ei such that n(α|E) = 1.

Remark 8. In particular, we can prove that when descend to f : X 99K Xm,

• If n(α|Sν ) = 0, then

• If n(α|Sν ) = 1,

Since we have shown that ⌊∆m⌋ = 0, the next proposition shows that the MMP X ′ 99K Xm actually
descends to a morphism f : X → Z.

Proposition 9. The induced bimeromorphic map f : X → Z := Xm is actually a morphism.
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PROOF IDEA 10. The idea is simple, take the resolution of the graph of the bimeromorphic
map f : X 99K Xm, with p : W → X and q : W → Xm. So that by rigidty lemma, if all the
p-exceptional curve is also q-exceptional, then the bimeromorphic map is actually a morphism.

We prove this by contradiction, if there exist some curve C ⊂ W such that p∗(C) = 0 but q∗(C) ̸= 0,
we pick a Kähler class ωm on Xm. If we can prove that q∗(ωm) is the pull back, say

p∗(ω + rS) = q∗ωm.

Then this will deduce the contradiction, as

0 < q∗(C) · ωm = p∗(ω + rS) · C = 0.

To see this, apply that N1(W/X) is generated by some p-exceptional divisors E1, ..., Ek. Thus the
divisor

q∗ωm +
∑

ciEi ≡X 0,

and therefore there exist some ω ∈ H1,1
BC(X) such that

q∗ωm +
∑

ciEi = p∗ω.

Note that S ·R < 0, there exist some r ∈ R such that (ω + rS) ·R = 0. We claim

Q =
∑

ciEi + rp∗S = 0

which complete the proof of the proposition. To do this, we will use the negativity lemma. We try
to show

(1) The Q is q-exceptional. Since we know that Θm = 0, therefore all the µ-exceptional part being
contracted by X ′ 99K Xm. And consequently, the birational map Xm 99K X is small. In particular,
the map f : X 99K Z does not extract any divisor (so that any p-exceptional divisor is also q-
exceptional divisor). In particular we know that the first terms

∑
ciEi is q-exceptional. On the

other hand, since f : X 99K Z contract S (i.e. f∗S = 0), so that the second term p∗S satisfies

f∗S = q∗(p
∗S) = 0,

i.e. the second term is also q-exceptional.

(2) The Q+ q∗ωm is q-numerical trivial. That is for any q-exceptional curve C, we have

(Q+ q∗ωm) · C = 0.

This is clear, since by definition Q+ q∗ωm = p∗(ω + rS) and therefore: if C is also p-exceptional,
then the intersection (∗) clearly holds. If C is not p-exceptional (i.e. p∗(C) ̸= 0). Since

α · p∗(C) = C · p∗(α) = C · q∗(αm) = 0.

(I am not pretty sure at this step, maybe C · p∗(α) = 0 use the α trivial of the contraction).

Therefore this will imply that
(ω + rS) · p∗C = 0.

As a consequence,
p∗(ω + rS) · C = (q∗(ωm) +Q) · C = 0.

which is what we want.
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2.5 Proof of the base pointness

To prove the base point freeness result, we need the following lemma, the first one says that image
of pull back of Bott-Chern is those classes that curves being contracted are trivial on it (assume
the singularity is nice and ).

Lemma 11. Let f : X → Y be a morphism between normal compact complex spaces with rational
singularity. If in addition one of the following two conditions hold,

1. f is a proper bimeromorphic morphism between Fujiki varieties,

2. f is surjective, there exist some boundary divisor B such that (X,B) is KLT. Moreover
(KX +B) is f -big and nef.

Then the pull back
f∗ : H1,1

BC(Y ) → H1,1
BC(X),

is injective, and the image

im(f∗) = {α ∈ H1,1(Y ) | α · C = 0, ∀ C ∈ N1(X/Z)}.

Thus if the contraction morphism f : X → Z is α-trivial, then there exists some αZ ∈ H1,1
BC(Z)

with f∗αZ = α.

Remark 12. Before proving the lemma, let us compare this result with the projective contraction
theorem. Recall that in the projective setting, if D is a Cartier divisor supporting some negative
extremal ray R, then D comes from the pull back (i.e. D ∈ im(f∗ : NS(Y ) → NS(X))). The proof
requires the base point free theorem to show that mD is base point free. Thus, mD is the pull
back of Serre twisted line bundle via map associated to mD. Finally, using rigidty lemma to show
that the Kodaira map coincides with the contraction f : X → Z. Thus the divisor mD is also pull
back via f : X → Z.

On the other hand, the transcendental case is relatively easier. Since ...

Proof.

To check αZ is Kähler, we need the following (singular version) Demailly-Păun Kählerness criterion.

Lemma 13. Let X be a compact normal complex variety. Let {α} ∈ H1,1
BC(X) be a big and nef

class. Then {α} is Kähler iff for any positive dimensional subvariety (or reduced analytic subset)
W , the following holds true ∫

W
(α|W )dimW > 0.

Proof.

Now we can prove the base freeness for the divisorial contraction f : X → Z, using Lemma 11 and
Lemma 13

8
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Proof of base point freeness. Compared with the flipping contraction case, this case is a bit harder.
The reason is, for flipping contraction, the flipping curve being contracted to points, and thus there
is no positive dimensional subvariety contains in it. In the divisoral contraction case, we need to
consider two scenario,

Case 1. When the positive dimensional subvariety W ′ ⊂ f(S). We need to use the condition that
curve C not being contracted must have positive intersection with α. Since we proved that S is
irreducible. Thus only needs to consider that W ′ = f(S) and it’s a irreducible curve. Therefore,
we may find some curve W ⊂ S upstairs dominating W ′.

Now use the condition that the curve W ′ not being contracted by f , it means

W ′ · α > 0.

And therefore, the Kahlerness of αZ is proved in this case.

Case 2. When the positive dimensional subvariety W ′ ̸⊂ f(S). In this case, we can consider the
strict transform of W ′ under f . And by the projection formula, we have

αdimW ′
Z ·W ′ = (f∗αZ)

dimW ·W = αdimW · dimW > 0,

the positive due to W does contains in the null locus.

3 Höring-Peternell’s approach for Kähler 3-fold MMP

In this section, we will introduce Höring-Peternell’s approach in [HP16]. In the paper, they proved
that

Theorem 14. Let X be a compact normal Q-factorial Kähler 3-fold with terminal singularity.

Let R ⊂ NA(X) be a divisorial type extremal ray. Then the divisorial contraction f : X → Z exist,
moreover the divisroial contraction will preserve the Kählerness condition such that there exists
some Kähler class αZ such that

α = f∗αZ .

For simplicity, we denote that following condition as condition (∗).

Definition 15 ((Condition (∗))). Let X be a compact normal Q-factorial Kähler 3-fold with
terminal singularity.

3.1 Existence of supporting nef class α

We first prove that for a negative extremal ray α, there always exist some supporting nef class.

Lemma 16. Let X be Kähler 3-fold satisfy the condition (∗), let R ⊂ NA(X) be a negative
extremal ray. Then there exist a nef class α ∈ H1,1

BC(X) such that

R = α⊥ ∩NA(X),

9
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moreover the class α is positive on the

NA(X)KX≥0 +
∑
i ̸=i0

R+[Γi].

Proof.

3.2 The irreducible surface S being contracted

thus we find a surface that Null(α) = S, we may take the normalization in Ŝ (in order to apply the
nef reduction).

3.3 Case 1. When the nef dimension n(α) = 1

Recall that the nef dimension is always less than the geometric dimension. So that n(ν∗α) ≤ 2.
We need to show that n(ν∗α) = 2 cannot happen. This is because for the surface case if the nef
dimension is 2, then for all but countable many curves on S satisfies α ·C > 0. On the other hand,
we know that S as null locus of α,

The original proof of [HP16] contains some error. However, Höring fix the error in his note [?] later.

We first try to prove that the general fiber of nef reduction map is P1. To be more precise

Theorem 17.

3.4 Case 2. When the nef dimension n(α) = 0

In this section, we prove the existence of divisorial contraction when nef dimension is 0. Before
proving it, let us first briefly sketch out the idea. We try to apply the Grauert contraction theorem
to a point (see [DH24, Lemma 4.3]). The point is try to show that the for the surface spaned

3.5 Prove the contraction preserve the Kahlerness condition

We finally prove that Kahlerness condition is preserved when contracting the divisorial negative
extremal ray in the generalized Mori cone. The tool that we need is the following

Lemma 18.

3.6 Höring-Peternell’s approach to the Mori fibre space case

Combined with the flipping contraction case appear in another my note. This will give a complete
contraction theorem for Kähler 3-folds.
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