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The aim of this note is to discuss the extension of contraction and their applications. We will
mainly focus on the Kollár-Mori’s (11.4), which can be stated as follows.

Theorem 1. Let f : X0 → Y0 be a morphism of proper schemes over a field such
that f∗OX0 = OY0 and R1f∗OX0 = 0 (or more generally the Ext0(ΩY0 , R

1f∗OX0) =
HomY

(
ΩY0 , R

1f∗OX0

)
= 0).

Then for every small deformation g : X → S of X0 there is a small deformation Y of Y0 such
that f lifts to f : X → Y .
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Before we dive into the discussion, let us first list some references on this topic. [Hor76, Theorem 8.1]
(perhaps the first one that proved the result), [Ran91, Theorem 2.1] (who formulate the problem
in the deformation obstruction theory), [BHPS13, Proposition 3.10] (prove the result in great
generality using the derived deformation theory). [KKL10] which is about deformation along a
foliation. For the Douady/Barlet-Chow cycle space argument, [BM19] is a good reference. In
Section 1, we sketch out the idea of the proof. In Section 2, we introduce some applications
(perhaps irrelevant to the paper in progress).

1 Sketch the idea of the proof

The proof of Kollár-Mori 11.4 is very likely motivated by Horikawa’s paper, the proof constitutes
two parts:

(1) First showing that obstruction of deformation of the contraction morphism lies in the R1f∗OX

(in particular the vanishing of 1st direct image implies unobstructness of the deformation),

(2) Second using the Douady space argument showing that extension from formal neighborhood to
actual neighborhood is unconditional.

We will sketch the idea of the proof, and some issues for discussion are highlighted in red boxes.

1.1 Step 1. Infinitesimal level extension (Formal extension)

Kollar Mori did not prove this part. Our proof is motivated by [DH24, Theorem 5.8], while
Horikawa’s approach uses some Cech process.

First, we have the following fundamental exact sequence

0 → OX(−jX0) → OX → OjX0 → 0, (1)

which will then induce

0 → OX0(−jX0) → O(j+1)X0
→ OjX0 → 0. (2)

Remark: For (2) to be exact, one requires X0 to be Cartier correct (I mean Q-Cartier
condition is insufficiet)?

On the other hand (1) holds as long as X0 is a Weil divisor, and does not require any
singularity assumption?

So that taking direct image on (2) will induce a long exact sequence

0 → f∗(OX0(−jX0)) → f∗O(j+1)X0
→ f∗OjX0 → R1f∗OX0(−jX0) → R1f∗O(j+1)X0

→ · · · , (3)

Similarly to the proof of [DH24, Theorem 5.8], we need to show that certain 1st direct image
vanishes (for [DH24], the positivity and singularity conditions are needed in order to apply the KV
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vanishing theorem). For our setting, we need to prove

R1f∗OX0(−jX0) = 0,

(which is expected to follows from the assumption R1f∗OX0 = 0, to do this my idea is to apply
projection formula for higher direct image

R1f∗(OX0(−jX0)) = R1f∗(OX0 ⊗OX(−jX0)) = R1f∗(OX0 ⊗ f∗L) = R1f∗OX0 ⊗ L = 0.

Here is the gap that I cannot fix.

QUESTION 1: How to show that

OX(−jX0) = f∗L?

After that we can inductively define the (j+1)-th order infinitesimal extension from j-th order, by
defining

Y
(j+1)
0 = Specan(f∗O(j+1)X0

),

which will induce the infinitesimal thickening of the morphism (since the construction here is
functorial).

X
(n+1)
0 Y

(n+1)
0

X
(n)
0 Y

(n)
0

f (n+1)

f (n)
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1.2 Step 2. Douady space argument (Effectiveness)

From formal neighborhood to analytic neighborhood, typically do not need to impose additional
conditions. Our proof in this section is motivated by [Hor76], rewrite it in a more clear manner by
the help of the book [BM19] (last chapter).

Remark 2. I am trying to give a new proof that replace Douady space by Chow-Barlet cycle space,
as cycle space is more powerful when dealing with non-reduced structure. The proof below is still
in the Douady space setting.

The idea is to use the correspondence between holomorphic morphism and graph of that morphism,
so that it is possible to convert the deformation of holomorphic map problem into deformation of
complex subspace problem. Thus, the Douady space can be used to ”parameterize” the family
of holomorphic maps. And the holomorphic section of the relative Douady space glue fiberwise
holomorphic map together.

Let
π′ : Y → Def(Y0)

be the Kuranishi family of deformation of Y0 (here Def(Y0) is some complex analytic space). It
can be very singular, but there exists some holomorphic curve ϕ : U → Def(Y0) passing through
0 ∈ Def(Y0), for some U ⊂ S. And therefore, we have the following pull back diagram.

Y Y

U Def(Y0)

h π′

ϕ

Let h × g : Y × X → U × U be the product family. We can define the relative Douady space
D = Douady(Y × X/U × U) that parameterizes the complex subspaces in the fibers of h × g.
Douady (and Pourcin for the relative version) proved that D admits some complex space structure,
and there exists a holomorphic map Φ : D → U × U .

Furthermore, the same proof as the Hom scheme is Zariski open in the Hilbert scheme, there exists
an open subset D′ ⊂ D that parametrizes the graph of the morphism (to be more precise, if we
pick a point [Γs,t] ∈ D′, then it represents a complex subspace Γs,t ⊂ Xs × Yt such that the natural
projection q1 : Γs,t → Xs is an isomorphism.

Γs,t

Xs Xs × Yt Yt

q1 q2

By definition, the representative [Γf ] of the graph of the morphism f : X0 → Y0 lies on the fiber
Φ−1(0, 0) and [Γf ] ∈ D′. The collection of infinitesimal thickenings of the morphism {f (n)}n∈N (we
constructed in Step 1) defines a formal section around (0, 0) ∈ U × U , as the picture shows below.
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Figure 1: Formal section of the relative Doaudy space.

Thus, by Artin [Art68], if furthur shrink U , there exists a holomorphic section σ : U × U → D′

around some analytic neighborhood 0 ∈ U ×U , and we restrict the section on the diagonal σ : U →
D′.

Next, we claim that the holomorphic section σ : U → D′ will define a holomorphic map X → Y/U
which is an extension of f : X0 → Y0.

To see this, note that the section σ : U → D′ gives an analytic family of subspace (Γs)s∈U in X×Y .
By [BM19, Theorem 4.3.3], the graph

GU = {(x, y, s) ∈ (X × Y )× U | (x, y) ∈ |Γs|}.

admits a complex space structure (Barlet proves the result in Barlet-Chow Cycle space setting, it
should be true for Douady space as well). (This complex space structure is important, as it glues
the fiber together).

Therefore, we have the natural projection (in the category of complex spaces) shown below.

GU =
⋃

s∈U Γs

X Y

U

p1 p2

p3

Since, by the definition of Γs ∈ D′, the restriction p1|Γs is isomorphism for all s ∈ U , so that p1 is
isomorphism and therefore there exists a holomorphic map

f = p2 ◦ p−1
1 : X → Y,

that commute the diagram, which completes the proof.
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1.3 Step 3. Applications of Theorem 1 to MMP steps

We finally apply Theorem 1 to the MMP steps, the proof is motivated by [dFH11, Theorem 4.1]).

We try to show that the following condition holds (which appears in my paper Corollary 2.12).

Theorem 3. Assume that we have a contraction morphism f : X0 → Y0 from a projective variety
X0 with canonical singularity,

(1) If R1f∗OX = 0, then the extension f : X → Y is a contraction morphism (say f∗OX = OY ).

(2) If f : X0 → Y0 is a (KX0 +∆0 + β0)-divisorial or flipping contraction (in an MMP step), then
there exists an extension f : X → Y which is a fiberwise bimeromorphic contraction morphism.

(3) If on the central fiber, f : X0 → Y0 is a divisorial or fiber type contraction. So it is for the
nearby fibers, however, the flipping contraction on the central fiber may restrict to identity for the
nearby fibers (Totaro’s example).

Proof of the contraction extend to contraction morphism on some neighborhood of
X0. First by construction at step 1, we know that on any n-th order infinitesimal thickening, we
have

OY,y → (f∗OX)y,

is isomorphism. Then we can apply the formal function theorem so that

QUESTION 3: Why the deformation of contraction morphism is still contraction morphism?

On the infinitesimal level, we define the structure sheaf on the target to be a direct image
say

O
Y

(j+1)
0

:= f∗O(j+1)X0
,

however, it’s not clear for me why from formal to actual extension is still a contraction
morphism, thus I cannot actually prove Theorem 3 (1).

QUESTION 4: (Relative MMP v.s. Absolute MMP v.s. fiberwise MMP)
Could I ask, what is the difference between these 3 concepts.

QUESTION 5: (Analytic flip v.s. Algebraic flip)
Could I ask the new phenomenon that appears in the analytic flip? That is ananlytic flip
may flip one component while algebra flip may flip several components.

Proof of fiberwise bimeromorphic. Take (1) as a grantee and prove (2). By Garf-Kirschner’s
decomposition theorem, on a projective variety with rational singularity, we can represent −(KX0+
∆0 + β0) by some ample divisor −(KX0 +∆0 +B0). Therefore, by the Kodaira vanishing theorem
R1f∗OX0 = 0. And therefore by Theorem 1, there exists some extension f : X → Y . Since
the deformation is flat morphism, we have dimX = dimY . Since contraction in the MMP step
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preserve the normal condition, we have Y0 is normal. Since being normal is an open condition,
so that Y is still normal. Since we assune Theorem 3 (1), we have f : X → Y is a contraction
morphism, therefore by Zariski main theorem (or Nakayama II.2.12) we have f : X → Y is actually
a bimeromorphic morphism, in particular it’s fiberwise bimeromorphic.

Proof of contraction type being preserved. The same as [dFH11, Theorem 4.1], use semi-
continuity. See also [KM92, Theorem 12.3.1]. I copy the statement of KM92 below.

Let g : X → S be a proper flat morphism of complex spaces. Assume that for some 0 ∈ S
the fiber X0 is a projective variety with only Q factorial rational singularities, dimX0 ≥ 3.
Let f0 : X0 → Y0 be the contraction of an extremal ray C0 ⊂ X0. By Theorem 1, there is a
proper flat morphism Y → S and a factorisation

g : X
f−→ Y → S

Then there is an open neighborhood 0 ∈ U ⊂ S such that if f0 contracts a subset of
codimension at least two (resp. contracts a divisor, resp. is a fiber space of generic relative
dimension k ) then fs contracts a subset of codimension at least two (which may be empty)
(resp. contracts a divisor; resp. is a fiberspace of generic relative dimension k ) if s ∈ U .

Proof.

2 Applications of the technique in Kollár-Mori 11.4

Kollár-Mori’s theorem 11.4 is powerful. In the final part of this note, we try to summarize some
applications in recent papers. (still work in progress).

2.1 Applications in Kähler minimal model program

Das-Hacon-Păun use Theorem 1 prove the semi-stable MMP for Kähler 4 folds over a curve.

Theorem 4 ([DHP24, Theorem 8.12]). Let f : (X,B) → T be a semi-stable klt pair of dimension
4 and W ⊂ T a compact subset. If (X/T ;W ) is Q-factorial and KX +B is effective over W , then
we can run the (KX +B)-MMP over a neighborhood of W in T which ends with a minimal model
over W .

2.2 Applications in algebraic approximation problems

Lin adopt Theorem 1 in the proof of the following result.

Theorem 5 ([Lin24, Proposition 1.7]). Let X ′ be a normal compact complex variety and let X be a
compact complex variety with at worst rational singularities that is bimeromorphic to X ′. Assume
that X ′ has a Y -locally trivial algebraic approximation for every subvariety Y ⊂ X ′ satisfying
dimY ≤ dimX ′ − 2. Then X has an algebraic approximation.
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2.3 Applications in deformation of Calabi-Yau problem 8

Remark 6. Without going too much into detail, the existence of the Y -locally trivial condition
(for dimY ≤ dimX ′ − 2) in the theorem implies that an algebraic approximation of X ′ can induce
an algebraic approximation of the higher model X ′′, provided that the bimeromorphic map

X ′′ → X ′,

is isomorphism in codimension 1 on the target.

Proof. Let
τ : X ′ 99K X

be the bimeromorphic map in the assumption. The idea is to take the common resolution

X̃

X ′ X

ν η

τ

We then try to apply the target stable result on ν, and source stable result on η (that is deformation
of X induce deformation of ν and deformation of X̃ induce deformation of η).

By [Lin24, Lemma 2.7], algebraic approximation on X ′ will induce an algebraic approximation on
X̃.

Since the target X has rational singularity, the direct image R1η∗OX̃ = 0. And therefore, by

Theorem 1, the algebraic approximation on X̃ descends to the algebraic approximation on X.

2.3 Applications in deformation of Calabi-Yau problem

Kollár use the Theorem 1, proved the following result (which says that one always has extension
of contraction except that the target is uniruled or in some Abelian variety case).

Theorem 7 ([Kol15, Theorem 33]). Let X be a projective variety with rational singularities, Y a
normal variety, and g : X → Y a surjective morphism with connected fibers. Assume that Y is not
uniruled. Then at least one of the following holds:

(1) Every small deformation of X gives a deformation of (g : X → Y ).

(2) There is a quasi-étale cover Ỹ → Y , a normal variety Z, and positive dimensional Abelian
varieties A1, A2 such that the lifted morphism g̃ : X̃ := X ×Y Ỹ → Ỹ factors as

X̃ Z ×A1 ×A2

Ỹ Z ×A1

g̃

∼=

Kollár expects that Theorem 1 is useful in solving the following conjecture about deformation of
Calabi-Yau fibration.
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2.4 Applications in the invariance of plurigenera problems 9

Conjecture 8 ([Kol15, Theorem 52]). Let g0 : (X0,∆0) → B0 be a relatively minimal log Cal-
abiYau fiber space where (X0,∆0) is a proper klt pair and H2 (X0, OX0) = 0.

Let (X,∆) be a klt pair and h : (X,∆) → (0 ∈ S) a flat proper morphism whose central fiber is
(X0,∆0).

Then, after passing to an analytic or étale neighborhood of 0 ∈ S, there is a proper, flat morphism
B → (0 ∈ S) whose central fiber is B0 such that g0 extends to a log Calabi-Yau fiber space
g : (X,∆) → B.

2.4 Applications in the invariance of plurigenera problems

Levine-Cao-Păun’s invariance of plurigenera adopt a very similar strategy as Theorem 1. They
first prove that infinitesimal extensions of the pluricanonical section exist when certain ∂̄-equation
holds and satisfies some L2-estimate.

Theorem 9. Let f : X → ∆ be a smooth family of Kähler manifolds,

s ∈ H0(X
(k)
0 ,L|

X
(k)
0

)

with L = (m − 1)KX , which admits a C∞ extension sk so that if we write ∂̄sk = tk+1Λk, the
integral

∫
X

∣∣∣∣Λk

dt

∣∣∣∣2 e−(1−ε)φLdV < ∞,

Converges for any positive ε > 0. Then there exists a section ŝ of L|
X

(k+1)
0

such that s = πk(ŝ).

Remark 10. Compared with the 1st direct image vanishing condition in Theorem 1, they imposed
some L2 condition. (I am not pretty sure it’s parallel condition or not).

Remark 11. Levine proved a similar result that a smooth pluricanonical section on the central
fiber admits infinitesimal thikening. Cao-Păun’s gave an alternative of Levine’s statement.

The extension of the pluricanonical section from the formal neighborhood of the central fiber to an
actual analytic neighborhood is unconditional (which is expected to be true compared to our proof
of Theorem 1 in Step 2).

Theorem 12. Let f : X → ∆ be a smooth family of compact complex manifolds. Assume that
the pluricanonical section on X0 admits infinitesimal extension, then it will admit some extension
on an analytic neighborhood of 0.

The next topic we will discuss is positivties in Käher families.
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