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The aim of this note is to introduce the transcendental volume.
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1 Absolute continuous part, non-pluripolar product, mobile in-
tersection number

2 Definition of volumes

Definition 1 (Volume of a line bundle, [Laz04, Definition 2.2.31]). Let X be an irreducible pro-
jective variety of dimension n, and let L be a line bundle on X. The volume of L is defined to be
the non-negative real number

vol(L) = volX(L) = lim sup
m→∞

h0 (X,L⊗m)

mn/n!
.

The volume vol(D) = volX(D) of a Cartier divisor D is defined similarly, or by passing to OX(D).

Definition 2 (Volume of a R-divisor, [FKL16, p. 8]). If X is a normal projective variety, D is an
R-divisor and n = dimX, then we define the volume of D by

vol(X,D) = lim sup
n!h0(X,mD)

mn

here h0(X,mD) = h0(X, ⌊mD⌋).

Remark 3. As mentioned in [FKL16],

Definition 4 (Volume of cohomology classes, [Bou02]). Let X be a compact Kähler n-fold. We
define the volume of a cohomology class α ∈ H1,1(X,R) by

v(α) := sup
T∈α

∫
X
Tn
ac = sup

T∈α

∫
X\Sing(T )

Tn

for T ranging over the closed positive (1,1)-currents in α, in case α is pseudo=effective. If it is not,
we set v(α) = 0.

Remark 5 (Absolute continuous part). The reason to take the absolute continuous part is because
that n-fold product of arbitrary closed positive current T is not well defined (require locally bounded
potential condition). Once we assume T absolute continuous, the product Tn

ac is well defined.

By [Car25, Proposition 3.4], when T is a current with analytic singularity, then the wedge product
coinside with the non-pluriproduct

⟨Tn⟩ = Tn
ac.

Remark 6 (Volume on normal varieties). On compact normal Kähler variety, we can first take a
resolution π : X ′ → X, and define the volume of a class α ∈ H1,1

BC(X,R) to be

vol(α) = sup
T∈π∗(α)

∫
X′

Tn
ac

It’s well defined, since volume function for a smooth variety is birational invariant (see Theorem
14).
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Alternatively we have the following definition of volume.

Definition 7. Let E be the pseudo-effective cone of the Kähler variety X. The volume of a class

α ∈ E , denoted vol(α), is defined as the supremum all numbers
(
β̃n

)
where µ : X̃ → X is a

modification and β̃ is a Kähler class on X̃ such that β̃ ≤ µ∗(α) (i.e., µ∗(α)− β̃ is pseudo-effective).
When α is not pseudo-effective we define its volume to be zero.

3 Fujita’s approximation

One of the central property that volume function satisfies is the Fujita approximation. Both big
line bundles and big cohomology classes satisfy such property.

Theorem 8 (Fujita approximation (for big line bundle on projective variety)). Let L be a big line
bundle on a projective manifold X. Then, for every ε > 0, there exists a modification µ : X̃ → X,
an ample Q-line bundle A and an effective Q-divisor E on X̃ (the data depends on ε ) such that:
(i) L = A+ E as Q-line bundles,
(ii) |v(A)− v(L)| < ε, in particular

An > v(L)− ϵ

Theorem 9 (Fujita approximation (for big cohomology classes on compact Kähler manifold),
[Bou02, Theorem 1.4]). Let X be a compact Kähler manifold, and let α ∈ H1,1(X,R) be a big
class on X. Then, for every ε > 0, there exists a modification µ : X̃ → X, a Kähler class ω and an
effective real divisor D on X̃ such that
(i) µ⋆α = ω + {D} as cohomology classes,
(ii) |v(α)− v(ω)| < ε.

4 Basic properties of volume functions

4.1 For (R-)divisors

Volume depends only on the numerical class of a R-divisor.

Proposition 10 (Volume is numerical invariant, [FKL16, Theorem 3.5]). Let D be an R-divisor
on a proper normal variety X of dimension n. If D′ is an R-divisor on X such that D′ − D is a
numerically trivial R-Cartier R-divisor, then vol(D) = vol (D′).

Volume function is continnuous on the N1(X)R space.

Proposition 11 (Continuity of volume function, [Laz04, Corollary 2.2.45]). The function ξ 7→
vol(ξ) on N1(X)Q extends uniquely to a homogenuous continuous function

vol : N1(X)R −→ R.

Volume increase in effective directions.
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Proposition 12 (Volume increases in effective directions, [Laz04, Example 2.2.48]). If ξ ∈ N1(X)R
is big and e ∈ N1(X)R is effective, then

vol(ξ) ≤ vol(ξ + e).

Remark 13 (Volume in pseudo-effective direction).

Volume satisfies the birational invariance property.

Theorem 14. Let
ν : X ′ −→ X

be a birational projective mapping of irreducible varieties. Then

volX(ξ) = volX′ (ν∗ξ)

for any class ξ ∈ N1(X)R.

For generic finite morphism we have similar pull back formula.

Theorem 15. Let f : Y → X be a proper, dominant, generically finite morphism of normal
projective varieties over k. For any D ∈ Div(X), we have

volY (f∗D) = deg(f) volX(D).

Similar to the global section, volume function satisfies the following property.

Theorem 16. Let g : X → Y be a birational morphism of normal projective varieties, and let D
be a R-Cartier divisor on Y and G be a R-divisor on X. If

G− g∗D ≥ 0

is effective and g-exceptional, then

vol(Y,G) = vol(X,D).

4.2 For cohomology classes

Volume function is continuous on the Bott-Chern cohomology space.

Proposition 17 ([Bou02, Corollary 4.11]). The volume vol : H1,1(X,R) → R is a continuous
function.

The volume function is log concave function.

Proposition 18 (log concavity of volume function, proved by Hacon). Let X be a compact Kähler
manifold. If α, α′ ∈ H1,1

BC(X,R) are big classes, then the volume satisfies the log concavity property

vol(α+ α′)1/n ≥ vol(α)1/n + vol(α′)1/n.

Proof.
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5 Positivity, singularity and volume

Volume of a nef class can be computed using

6 Upper semi-continuity of volumes

Jiao proved the following upper semi-continuity of volume for projective family with irreducible
reduced fibers.

Theorem 19 ([Jia25]).

Boucksom proved the following upper semi-continuity of volume for smooth Kähler family.

Theorem 20 ([Bou02]).

7 Deformation invariance of volume of adjoint divisors (classes)

Volume of log canonical divisor satisfies deformation invariance properties.

Theorem 21 ([HMX18, Corollary 4.3]). Let π : X −→ T be a projective morphism of smooth
varieties. Suppose that (X,∆) is log canonical and has simple normal crossings over T . Then the
volume function

t 7−→ vol(Xt,KXt +∆t)

is independent of t.

This is also true for generalized Kähler pairs, when central fiber is projective with big adjoint class.

Theorem 22.

8 Volume in divisorial Zariski decomposition

We already seen that volume may increase in

9 Volume in the minimal model program
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