

Transcendental Volume

Spring 2025

Note 0 — 06, 06, 2024 (draft version)

Yi Li

1

The aim of this note is to introduce the transcendental volume.

Contents

1 Absolute continuous part, non-pluripolar product, mobile intersection number	2
2 Definition of volumes	2
3 Fujita's approximation	3
4 Basic properties of volume functions	3
4.1 For (\mathbb{R}) -divisors	3
4.2 For cohomology classes	4
5 Positivity, singularity and volume	5
6 Upper semi-continuity of volumes	5
7 Deformation invariance of volume of adjoint divisors (classes)	5
8 Volume in divisorial Zariski decomposition	5
9 Volume in the minimal model program	5

¹**WARNING:** (1) Round 1: sketch notes; (2) Round 2: more details but contains errors; (3) Round 3: correct version but not smooth to read; (4) Round 4: close to the published version.
To ensure a pleasant reading experience. Please read my notes from ROUND ≥ 4 .

1 Absolute continuous part, non-pluripolar product, mobile intersection number

2 Definition of volumes

Definition 1 (Volume of a line bundle, [Laz04, Definition 2.2.31]). Let X be an irreducible projective variety of dimension n , and let L be a line bundle on X . The volume of L is defined to be the non-negative real number

$$\text{vol}(L) = \text{vol}_X(L) = \limsup_{m \rightarrow \infty} \frac{h^0(X, L^{\otimes m})}{m^n/n!}.$$

The volume $\text{vol}(D) = \text{vol}_X(D)$ of a Cartier divisor D is defined similarly, or by passing to $\mathcal{O}_X(D)$.

Definition 2 (Volume of a \mathbb{R} -divisor, [FKL16, p. 8]). If X is a normal projective variety, D is an \mathbb{R} -divisor and $n = \dim X$, then we define the volume of D by

$$\text{vol}(X, D) = \limsup \frac{n!h^0(X, mD)}{m^n}$$

here $h^0(X, mD) = h^0(X, \lfloor mD \rfloor)$.

Remark 3. As mentioned in [FKL16],

Definition 4 (Volume of cohomology classes, [Bou02]). Let X be a compact Kähler n -fold. We define the volume of a cohomology class $\alpha \in H^{1,1}(X, \mathbb{R})$ by

$$v(\alpha) := \sup_{T \in \alpha} \int_X T_{ac}^n = \sup_{T \in \alpha} \int_{X \setminus \text{Sing}(T)} T^n$$

for T ranging over the closed positive (1,1)-currents in α , in case α is pseudo-effective. If it is not, we set $v(\alpha) = 0$.

Remark 5 (Absolute continuous part). The reason to take the absolute continuous part is because that n -fold product of arbitrary closed positive current T is not well defined (require locally bounded potential condition). Once we assume T absolute continuous, the product T_{ac}^n is well defined.

By [Car25, Proposition 3.4], when T is a current with analytic singularity, then the wedge product coincide with the non-pluriproduct

$$\langle T^n \rangle = T_{ac}^n.$$

Remark 6 (Volume on normal varieties). On compact normal Kähler variety, we can first take a resolution $\pi : X' \rightarrow X$, and define the volume of a class $\alpha \in H_{BC}^{1,1}(X, \mathbb{R})$ to be

$$\text{vol}(\alpha) = \sup_{T \in \pi^*(\alpha)} \int_{X'} T_{ac}^n$$

It's well defined, since volume function for a smooth variety is birational invariant (see Theorem 14).

Alternatively we have the following definition of volume.

Definition 7. Let \mathcal{E} be the pseudo-effective cone of the Kähler variety X . The volume of a class $\alpha \in \mathcal{E}$, denoted $\text{vol}(\alpha)$, is defined as the supremum all numbers $(\tilde{\beta}^n)$ where $\mu : \tilde{X} \rightarrow X$ is a modification and $\tilde{\beta}$ is a Kähler class on \tilde{X} such that $\tilde{\beta} \leq \mu^*(\alpha)$ (i.e., $\mu^*(\alpha) - \tilde{\beta}$ is pseudo-effective). When α is not pseudo-effective we define its volume to be zero.

3 Fujita's approximation

One of the central property that volume function satisfies is the Fujita approximation. Both big line bundles and big cohomology classes satisfy such property.

Theorem 8 (Fujita approximation (for big line bundle on projective variety)). Let L be a big line bundle on a projective manifold X . Then, for every $\varepsilon > 0$, there exists a modification $\mu : \tilde{X} \rightarrow X$, an ample \mathbf{Q} -line bundle A and an effective \mathbf{Q} -divisor E on \tilde{X} (the data depends on ε) such that:

- (i) $L = A + E$ as \mathbf{Q} -line bundles,
- (ii) $|v(A) - v(L)| < \varepsilon$, in particular

$$A^n > v(L) - \varepsilon$$

Theorem 9 (Fujita approximation (for big cohomology classes on compact Kähler manifold), [Bou02, Theorem 1.4]). Let X be a compact Kähler manifold, and let $\alpha \in H^{1,1}(X, \mathbf{R})$ be a big class on X . Then, for every $\varepsilon > 0$, there exists a modification $\mu : \tilde{X} \rightarrow X$, a Kähler class ω and an effective real divisor D on \tilde{X} such that

- (i) $\mu^*\alpha = \omega + \{D\}$ as cohomology classes,
- (ii) $|v(\alpha) - v(\omega)| < \varepsilon$.

4 Basic properties of volume functions

4.1 For (\mathbb{R} -)divisors

Volume depends only on the numerical class of a \mathbb{R} -divisor.

Proposition 10 (Volume is numerical invariant, [FKL16, Theorem 3.5]). Let D be an \mathbb{R} -divisor on a proper normal variety X of dimension n . If D' is an \mathbb{R} -divisor on X such that $D' - D$ is a numerically trivial \mathbb{R} -Cartier \mathbb{R} -divisor, then $\text{vol}(D) = \text{vol}(D')$.

Volume function is continuous on the $N^1(X)_{\mathbb{R}}$ space.

Proposition 11 (Continuity of volume function, [Laz04, Corollary 2.2.45]). The function $\xi \mapsto \text{vol}(\xi)$ on $N^1(X)_{\mathbb{Q}}$ extends uniquely to a homogenous continuous function

$$\text{vol} : N^1(X)_{\mathbb{R}} \longrightarrow \mathbb{R}.$$

Volume increase in effective directions.

Proposition 12 (Volume increases in effective directions, [Laz04, Example 2.2.48]). If $\xi \in N^1(X)_{\mathbf{R}}$ is big and $e \in N^1(X)_{\mathbf{R}}$ is effective, then

$$\text{vol}(\xi) \leq \text{vol}(\xi + e).$$

Remark 13 (Volume in pseudo-effective direction).

Volume satisfies the birational invariance property.

Theorem 14. Let

$$\nu : X' \longrightarrow X$$

be a birational projective mapping of irreducible varieties. Then

$$\text{vol}_X(\xi) = \text{vol}_{X'}(\nu^* \xi)$$

for any class $\xi \in N^1(X)_{\mathbf{R}}$.

For generic finite morphism we have similar pull back formula.

Theorem 15. Let $f : Y \rightarrow X$ be a proper, dominant, generically finite morphism of normal projective varieties over k . For any $D \in \text{Div}(X)$, we have

$$\text{vol}_Y(f^* D) = \deg(f) \text{vol}_X(D).$$

Similar to the global section, volume function satisfies the following property.

Theorem 16. Let $g : X \rightarrow Y$ be a birational morphism of normal projective varieties, and let D be a \mathbb{R} -Cartier divisor on Y and G be a \mathbb{R} -divisor on X . If

$$G - g^* D \geq 0$$

is effective and g -exceptional, then

$$\text{vol}(Y, G) = \text{vol}(X, D).$$

4.2 For cohomology classes

Volume function is continuous on the Bott-Chern cohomology space.

Proposition 17 ([Bou02, Corollary 4.11]). The volume $\text{vol} : H^{1,1}(X, \mathbb{R}) \rightarrow \mathbb{R}$ is a continuous function.

The volume function is log concave function.

Proposition 18 (log concavity of volume function, proved by Hacon). Let X be a compact Kähler manifold. If $\alpha, \alpha' \in H_{\text{BC}}^{1,1}(X, \mathbb{R})$ are big classes, then the volume satisfies the log concavity property

$$\text{vol}(\alpha + \alpha')^{1/n} \geq \text{vol}(\alpha)^{1/n} + \text{vol}(\alpha')^{1/n}.$$

Proof.

□

5 Positivity, singularity and volume

Volume of a nef class can be computed using

6 Upper semi-continuity of volumes

Jiao proved the following upper semi-continuity of volume for projective family with irreducible reduced fibers.

Theorem 19 ([Jia25]).

Boucksom proved the following upper semi-continuity of volume for smooth Kähler family.

Theorem 20 ([Bou02]).

7 Deformation invariance of volume of adjoint divisors (classes)

Volume of log canonical divisor satisfies deformation invariance properties.

Theorem 21 ([HMX18, Corollary 4.3]). Let $\pi : X \rightarrow T$ be a projective morphism of smooth varieties. Suppose that (X, Δ) is log canonical and has simple normal crossings over T . Then the volume function

$$t \mapsto \text{vol}(X_t, K_{X_t} + \Delta_t)$$

is independent of t .

This is also true for generalized Kähler pairs, when central fiber is projective with big adjoint class.

Theorem 22.

8 Volume in divisorial Zariski decomposition

We already seen that volume may increase in

9 Volume in the minimal model program

References

- [Bou02] S. Boucksom, *On the volume of a line bundle*, International Journal of Mathematics **13** (2002), no. 10, 1043–1063.
- [Car25] Tiernan Cartwright, *Definitions of the volume of a big cohomology class*, 2025.

- [FKL16] M. Fulger, J. Kollar, and Brian Lehmann, *Volume and Hilbert function of \mathbb{R} -divisors*, Michigan Math. J. **65** (2016), no. 2, 371–387.
- [HMX18] Christopher D. Hacon, James McKernan, and Chenyang Xu, *Boundedness of moduli of varieties of general type*, J. Eur. Math. Soc. (JEMS) **20** (2018), no. 4, 865–901.
- [Jia25] Junpeng Jiao, *The volume function is upper semicontinuous on families of divisors*, 2025.
- [Laz04] Robert Lazarsfeld, *Positivity in algebraic geometry. I*, vol. 48, Springer-Verlag, Berlin, 2004, Classical setting: line bundles and linear series.