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Moishezon space and Moizhezon morphism Summer 2025

Note 1 — 2025-07-07 (draft version)

Yi Li

1 Overview

The aim of this note is to give a brief introduction to Moishezon vairety and Moishezon morphism.
The major references for this note are [Kol22], [Fuj83], and [Uen75].

Why study Moishezon morphisms? First, Moishezon spaces have more functorial behavior (com-
pared with projective varieties), as we will see in Section 2. Secondly, from almost any projective
variety we can construct a Moishezon space via bimeromorphic modification, making Moishezon
spaces versatile in birational geometry. Thirdly, by Artin’s fundamental theorem, the category of
Moishezon spaces appears naturally in moduli theory. Another compelling reason to consider the
Moishezon category is that it allows cut-and-paste operations similar to those we can perform in
topology.

This series of talks is organized as follows:

Lec 1. Basic knowledge about Moishezon spaces and Moishezon morphisms,

Lec 2. Fiberwise bimeromorphic problems.

Lec 3. General type locus, Moishezon locus, and projective locus.

Lec 4. Projectivity critera and behavior of projective locus.

Lec 5. Rational curves on Moishezon spaces.
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2 Moishezon spaces

Definition 2.1 (Meromorphic S-map). Let X,Y be reduced complex spaces. We call the S-map
a meromorphic S-map if
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Γ

X Y

S

p q

α

f g

the natural projection associated to the graph p : Γ → X is a proper bimeromorphic morphism.
Moreover, if the natural projection q : Γ → Y is also a proper bimeromorphic morphism, then we
call α a proper bimeromorphic S-map.

Remark 2.2 (Comparison between meromorphic map and S-meromorphic map). By definition,

X ×S Y ↪→ X × Y

is an inclusion. Therefore, it is easy to see that

S-meromorphic map =⇒ meromorphic map.

Conversely, the graph of a meromorphic map Γ ⊂ X × Y needs not to contain in X ×S Y , so that
a meromorphic map needs not to be a S-meromorphic map.

Remark 2.3 (Comaprison between S-meromorphic map and fiberwise meromorphic map). Note
that a S-bimeromorphic map does not need to be a fiberwise bimeromorphic map. Since the
restriction of a bimeromorphic map on the subvariety (the fiber) need not to be a bimeromorphic
map. We will discuss more about the fiberwise bimeromorphic map in the Note-2.

Definition 2.4 (Moishezon space, first definition). A proper, irreducible, reduced analytic space
X is Moishezon if it is bimeromorphic to a projective variety Xp.

Remark 2.5. The following proposition tell us when the meromorphic map is an actual morphism,
using the rigidty lemma.

Let f : X 99K Y be a bimeromorphic map with the resolution of indetermancy.

W

X Y

p q

then if any C ⊂W p-exceptional is also q-exceptional. Then the birational map is also a morphism.

Definition 2.6 (Moishezon space, second definition). A proper, irreducible, reduced analytic space
X is Moishezon if

a(X) := tr degCM(X) = dim(X)

that is, it has dimX number of algebraic dependent meromorphic function.

Definition 2.7 (Moishezon space, third definition). A proper irreducible, reduced analytic space
X is Moishezon if it carries a big rank 1 reflexive sheaf F . Here the big rank 1 reflexive sheaf
means that the induced Kodaira map g : X 99K P(H0(X,F )) is bimeromorphic onto it’s image.
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Proposition 2.8. Three different definitions for Moishezon spaces above are equivalent.

Proof. see e.g. [Uen75].

The first important property for Moishezon space is that it locally looks like quasi-projective scheme
up to a étale cover.

Proposition 2.9 ([Kol22, Proposition 8.2]). Let X be a Moishezon space. For every x ∈ X there
is a pointed quasi-projective scheme (x′, X ′) and an étale morphism (x′, X ′) → (x,X).

Proof. It’s quite difficult; for the sake of time, we omit it here. For the curious reader, please refer
to [Art70].

Lemma 2.10 (Existence of Galois closure). Let π : X ′ → X be a finite covering between normal
analytic varieties. Then there exists a finite Galois covering φ : X ′′ → X from a normal analytic
variety X ′′ which factors through π which is universal in the following sense:

X ′

X ′′ X

π

φ

For any finite Galois covering ψ : Y → X from a normal analytic variety which factors through π,
there exists uniquely a Galois covering Y → X ′′ over X ′.

Using the existence of Galois closure, we can write a normal Moishezon space globally as a quotient
of a proper variety by a finite group.

Proposition 2.11 ([Kol22, Proposition 8.3]). Let X be a Mosiehzon variety. If X is normal, then
there is a proper variety Y and a finite group G that acts on Y such that X ∼= Y/G. (Note that in
general Y can not be chosen projective.)

Proof. First, by Proposition 2.11, there exists some étale cover of X (indeed, since the étale mor-
phism is finite, we can find an open cover of X be the étale morphism). Since X is proper, we
can find some finite cover of it. Now by the previous lemma we can take the Galois closure of the
finite étale cover Xi → X. We then apply the universal property of the Galois closure, thus it is
possible to patch the collection of Galois closures {Xi → X} together in the Zariski topology via
gluing lemma (see e.g. Hartshorne Exercise II 2.12.), and therefore we can get a finite covering of
X, Y → X and thus X ≃ Y/G.

Artin [Art70] proved the following theorem, demonstrating the importance of the category of
Moishezon spaces in moduli theory.

Proposition 2.12 ([Art70, Theorem 7.3]). There is a natural functor

an : (algebraic space of finite type over C) → (complex spaces)
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extending the functor an on the category (schemes of finite type /C). This functor induces an
equivalence of categories

(complex algebraic schemes of finite type/C) → (Moishezon spaces).

In other words, every Moishezon space is in an unique way an algebraic space.

We next prove that a Kahler Moishezon space with 1-rational singularity is a projective variety.
Before proving the theorem, let us first state two results that will be used in the proof.

Lemma 2.13. Let X be a compact Moishezon space with 1-rational singularity, that is, X is
normal and has a resolution π : Y → X such that R1π∗OY = 0. Then an analytic homology class
b ∈ A2(X,Q) is zero if it is numerically equivalent to 0. In particular,

A2(X,Q) = N1(X)Q ⊂ H2(X,Q).

Lemma 2.14 (Nakai-Moishezon criterion for Q-line bundles over Kähler Moishezon space). Let X
be a Kähler Moishezon space with a Kähler form ω. Assume that an element L ∈ Pic(X)Q satisfies
the equality for any curve C ⊂ X :

(C.L) =

∫
C
ω.

Then L is ample.

Proposition 2.15 ([Nam02]). Let X be a Moishezon space with 1-rational singularity. If X is
Kähler, then X is projective.

Proof of the Proposition 2.15. Since the numerical equivalence and the homological equivalence
coincide for (analytic) 1-cycle by Lemma 2.13, we have a natural map

α : N1(X)Q → (A2(X,Q))∗ , d 7→ (− · d),

and α is an isomorphism (by duality of N1(X)Q and N1(X)Q).

Note that ω ∈ H2(X,R) Kähler form as an element of (A2(X,R))∗. By simply define

αω : A2(X,R) → R, C 7→ ω · C =

∫
C
ω.

Since αR is surjective, there is an element d ∈ N1(X)R such that

(C · d) =
∫
C
ω,

for every curve C ⊂ X.

We then approximate d ∈ N1(X)R by a convergent sequence {dm} of rational elements dm ∈
N1(X)Q.

Let us fix the basis b1, . . . , bl of the vector space N1(X)Q. Each bi is represented by an element
Bi ∈ Pic(X)Q via the quotient

Pic(X)Q → N1(X)Q = Pic(X)Q/ ≡, Bi 7→ bi,
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Now d (resp. dm) is represented by an element in Pic(X)R (resp. Pic(X)Q )

D := ΣxiBi,

(resp. Dm := Σx
(m)
i Bi ) such that limx

(m)
i = xi. Put Em := Dm − D. Then there are d closed

(1, 1)-forms αm corresponding to Em such that {αm} uniformly converge to 0 .

If m is chosen sufficiently large, then ωm := ω + αm is a Kähler form. Since

(C.Dm) =

∫
C
ωm > 0,

for every curve C ⊂ X. We see that Dm is ample by Lemma 2.14 (Note that we have Dm being
a Q-divisor, so that it’s possible to apply the Nakai-Moishezon criterion). In particular, X is
projective.

Remark 2.16. There exist some Kähler Moishezon spaces with bad singularity that are not pro-
jective. (As we shall see in the last section).

Proposition 2.17 ([Kol22, Proposition 8]).
(1) Let X be a Moishezon space, if Z → X be finite then Z is Moishezon.

(2) Let X be a Moishezon space, and f : X → Y be a surjective morphism of complex varieties.
Then Y is also Moishezon.

(3) Let X be a Moishezon space, assume that Z ⊂ X is Mosiezhon, then

Proof of (1). By definition
trdegCK(X) = dimX,

and if Z is finite map then
K(X) ↪→ K(Z),

is a finite field extension. Therefore by additive property for a tower of field extensions, we have

trdegC(K(Z)) = trdegC(K(X)) + trdegK(X)K(Z) = trdegC(K(X)).

Proof of (2). It will be generalized in to the relative version, see 3.14.

Proof of (3). Consider the following pull back diagram.

Zp = f−1(Z) Xp

Z X

fZ f

Clearly Zp is projective (as subvariety of Xp), and fZ is surjective (by definition of Zp). Therefore,
by (2), we know that Z is again Moishezon.

The following proposition shows that the Moishezon manifolds admit strong Hodge decomposition.
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Proposition 2.18. If X is a Moishezon manifold, then the Hodge decomposition holds, indeed a
Moishezon manifold admits strong Hodge decomposition.

Before proving the theorem, let us first define what is strong Hodge decomposition. We say that a
compact manifold admits a strong Hodge decomposition if the natural maps

Hp,q
BC(X,C) −→ Hp,q(X,C), [αp,q]BC 7→ [αp,q]∂̄

⊕
p+q=k

Hp,q
BC(X,C) −→ Hk(X,C),

∑
[αp,q] 7→

∑
αp,q,

are isomorphisms.

Remark 2.19. As a direct consequence, we see that a Moishezon manifolds admits the Du Bois
property, that is

H i(X,C) → H i(X,OX),

is surjective for all i ≥ 0. (which will be used in the third note).

Proof. The idea of the proof comes from [Dem97, Proposition (12.3)]. We first take the projective
modification

µ : X̃ → X,

such that X ′ is a projective manifold. And therefore X ′ admits a strong Hodge decomposition. On
the other hand

We first observe that µ⋆µ
⋆β = β for every smooth form β on Y . In fact, this property is equivalent

to the equality ∫
Y
(µ⋆µ

⋆β) ∧ α =

∫
X
µ⋆(β ∧ α) =

∫
Y
β ∧ α.

for every smooth form α on Y , and this equality is clear because µ is a biholomorphism outside
sets of Lebesgue measure 0 (which holds in general for a proper surjective bimeromorphic map).

Consequently, the induced cohomology morphism µ⋆ is surjective and µ⋆ is injective (but these
maps need not be isomorphisms).

Now, we have commutative diagrams with either upward or downward vertical arrows. Hence the
surjectivity or injectivity of the top horizontal arrows implies that of the bottom horizontal arrows.

We next introduce Campana’s Moishezon criterion. The proof uses the core reduction he introduced.

Proposition 2.20 ([Cam81, Corollaire on p. 212]). Let X be a compact complex variety in the
Fujiki class C . Then X is Moishezon if and only if X is algebraically connected.
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As an immediate consequence.

Corollary 2.21. A compact Kahler manifold is projective iff it’s algebraically connected.

Proposition 2.22. Let f : X → B be a fibration over an algebraically connected variety (e.g. a
projective curve). Assume that X is in the Fujiki class C and the general fiber of f is algebraically
connected, then X is Moishezon if and only if f has a multi-section.

Proof. The proof is clear, since admit multi-section implies the algebraic connectedness of X.

Remark 2.23. For readers interested in the applications of the algebraic connectedness criterion,
I recommend the paper by [Lin23]. He try to addresse the following question.

Question 2.24 (Oguiso–Peternell problem, [Lin23, Problem 1.2]). Let X be a compact Kähler
manifold of dimension n such that Int (Psef(X)∨) (or Int (K (X)∨) for dual Kähler cone K (X))
contains an element of H2n−2(X,Q). Is X always projective? If not, how algebraic is X ?

3 Moishezon morphisms

Let us first recall the definition of a projective morphism.

Definition 3.1 (Projective morphism, first definition). Let X → S be a proper morphism between
complex spaces. f is projective if there exists a locally free coherent sheaf E of finite rank such that
there exists a closed S-immersion X ↪→ PS(E), with the following diagram commute.

X PS(E)

S

Definition 3.2 (Projective morphism, second definition). Let X → S be a proper morphism
between complex spaces. f is projective if X can be embedded in PN × S for some N , with the
following the diagram commute.

X PN × S

S

Note that Kollár adopt the second definition.

Definition 3.3 (Locally projective morphism). Let f : X → S be a proper morphism of complex
spaces. We call f locally projective if for every relatively compact open subset Q of S the restriction
fQ : XQ → Q is a projective morphism.

Remark 3.4. Easy to see the second definition will immediate implies the first definition. Converse
direction also holds when the base is Stein or quasi-projective.
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Proof. Assume we have the 1st definition, so that f : X → S and g : Y = PS(f∗L⊗m) → S. Let
A be an g-ample line bundle. And, therefore by Serre vanishing theorem over some Stein compact
subset B ⊂ S, for some sufficient large n≫ 0, we have

g∗g∗(E ⊗A⊗n) → E ⊗A⊗n,

is surjective. Since the base S is Stein, by Cartan A theorem, g∗(E ⊗ A⊗n) is global generated.
And therefore so it’s the pull back g∗g∗(E ⊗A⊗n). Since the surjective map sends global generated
coherent sheaf to global generated coherent sheaf. This means that E ⊗A⊗n is global generated.

By coherence of E ⊗ A⊗n, the cohomology group V = H0(Y, E ⊗ A⊗n) is finite dimensional. And
there is a surjection

V ⊗OY → E ⊗A⊗n.

And therefore it will induce an embedding

X ↪→ PB (E) = PB

(
E ⊗A⊗m

)
↪→ P(V )×B,

after shrink the base B ⊂ S.

Remark 3.5. When the total space has only finite number of irreducible components, then a locally
projective morphism is bimeromorphic to a projective morphism. (see [Fuj83, Lemma 1.3.1]).

In what follows, we may assume that the base S is reduced. However, in general, we do not require
the total space X to be reduced or not.

Definition 3.6 (Moishezon morphism, 1st definition). A proper morphism of analytic spaces g :
X → S is Moishezon if g : X → S is bimeromorphic to a projective morphism gp : Xp → S.

That is, there is a closed subspace Y ⊂ X ×S X
p such that the coordinate projections Y → X and

Y → Xp are bimeromorphic.

Y

X Xp

S

Definition 3.7 (Moishezon morphism, 2nd definition). A proper morphism of analytic spaces
g : X → S is Moishezon if There is a projective morphism of algebraic varieties G : X → S and a
meromorphic ϕS : S 99K S such that X is bimeromorphic to X × SS, the fiber product of rational
maps is defined where the maps are defined, so on a dense open set.

Remark 3.8. Let us say few words about the fiber product for a rational map ϕS : S 99K S, the
fiber product is defined on the place that ϕS is holomorphic map.

Definition 3.9 (Moishezon morphism, 3rd definition). A proper morphism of analytic spaces
g : X → S is Moishezon if there is a rank 1, reflexive sheaf L on X such that the natural map
X 99K ProjS (g∗L) is bimeromorphic onto the closure of its image.
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Proposition 3.10. Three definitions of Moishezon morphism are equivalent.

Proof. Definition 3.7 equivalent to the Definition 3.6 is clear (using Proposition 3.16). Conversely,
if there exists a projective family Xp → S that bimeromorphic to a given f : X → S, then by
generic flatness we know gp : Xp → S is flat over So for some Zariski open subset So ⊂ S, and
therefore using the definition of projective family, there exist a morphism

So → Hilb(PN )

such that the projective family is the pull back

Xp M

S Hilb(PN )

We now show that the first definition and third definition are equivalent. From third definition
to first definition is clear since ProjS(f∗L) is projective over S. Conversely, if f : X → S is
bimeromorphic to a projective morphism Xp → S. Then since we assume X is normal, therefore
the meromorphic map X 99K Xp is morphism outside codimension 2 subset. And the pull back
(ϕo)∗OX(1) is a big line bundle defined on a big open subset, which can be extended uniquely to a
big rank 1 reflexive sheaf.

Remark 3.11. The termiology in different paper are different, we can summarize it as below.

Figure 1: Definitions in different papers

Moishezon morphism satisfies the following Chow type lemma (which can be viewed as the deter-
ministic property of a Moishezon morphism).

Theorem 3.12 ([DH20, Lemma 2.18]). Let f : X → S be a proper surjective morphism of analytic
varieties, and let L be a f -big line bundle on X and D a Q-divisor. Then

(1) Over any relatively compact open subset V ⊂ S, there exists a proper (indeed it’s projective
see [CH24]) bimeromorphic morphism α :W → f−1V from a smooth analytic variety W such that
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β = f |f−1V ◦ α :W → V is a projective morphism and,

(2)
(
W,α−1

∗

(
D|f−1V

)
+ Ex(α)

)
is a log smooth pair.

First, let us compare the theorem above with the Definition 3.6, in the Definition, we only as-
sume the existence of some bimeromorphic S-map, the Chow lemma allows us to choose some
bimeromorphic projective morphism.

Proof. Let ϕ : X 99K Y be the relative Iitaka fibration of L over S and g : Y → S the induced
projective morphism. Since L is f -big, ϕ : X 99K Y is bimeromorphic. Let p : Γ → X and
q : Γ → Y be the resolution of indeterminacy of ϕ so that p is proper.

Γ

X Y

S

p q

ϕ

f g

Now fix a relatively compact open subset V ⊂ S. Choose another relatively compact open set
U ⊂ S containing V such that V̄ ⊂ U . Note that U is σ-compact, since it is relatively compact.
Since f and g are both proper morphisms, it follows that XU := f−1U and YU := g−1U are both
σ-compact. Let ΓU := q−1

(
g−1U

)
= p−1

(
f−1U

)
. Then from the commutative diagram above it

follows that q|ΓU
: ΓU → g−1U is a proper morphism. In particular, ΓU is σ-compact. Note that

q|ΓU
is bimeromorphic. Therefore there is a projective bimeromorphic morphism h : Z → ΓU from

an analytic variety Z such that q|ΓU
◦ h : Z → YU is a projective bimeromorphic morphism. Since

g is projective, so is Z → U .

Now we replace U by our previously fixed open set V . Then ZV := (g◦ q ◦ h)−1V is a relatively

compact open subset of Z. Let r : W → ZV be the log resolution of
(
ZV , (p ◦ h)−1

∗

(
D|f−1V

))
.

Let α := p|ΓV
◦ h

∣∣∣
h−1ΓV

◦ r and β := g|g−1V ◦ q
∣∣∣
ΓV

◦ h
∣∣∣∣
h−1ΓV

◦ r, where ΓV := p−1
(
f−1V

)
=

q−1
(
g−1V

)
. Note that β is a projective morphism, since it is a componsition of projective mor-

phisms over relatively compact bases.

Then α :W → f−1V is a proper bimeromorpic morphism and β :W → V is a projective morphism

such that β = f |f−1V ◦ α and
(
W,α−1

∗

(
D|f−1V

)
+ Ex(α)

)
is a log smooth pair.

Proposition 3.13 ([Fuj83, Proposition 1.5.(4)]). Suppose that there exists a locally projective
morphism g : Y → S and a generically finite meromorphic S-map h : X 99K Y . Then f is
Moishezon.

X Y

S

h

f g
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Proof. First since being Moishezon is stable under bimeromorphic change, without lose of generality
we can assume that h is a morphism. Since Moishezon morphism and locally projective morphism
are proper. So that h is proper. Apply the Stein factorization theorem, such that h2 is projective
(since h2 is finite) and h1 is proper. Thus, the composition g ◦ h2 is locally projective. And thus
by definition X → S is a Moishezon morphism.

X∗

X Y

S

h2h1

h

g

Proposition 3.14 ([Fuj83, Proposition 1.7]). Let f : X → S be a Moishezon morphism, and
g : Y → S a proper morphism, of reduced complex spaces. Suppose that there is a generically
surjective meromorphic S-map h : X 99K Y . Then g also is Moishezon.

Proof. This Proposition can be viewed as a generalization of the Proposition 2.17. The proof is a
bit involving, and we omit it here.

Proposition 3.15 ([Fuj83, Proposition 1.5]).
(1) The morphism f : X → S is Moishezon if and only if for each irreducible component Xi of X
the restriction f = f |Xi

: Xi → S is Moishezon.

(2) Let f : X → S be a Moishezon morphism. Then: For every reduced analytic subspace X ′ ⊆ X
the induced morphism f ′ = f |X′ : X ′ → S is Moishezon.

Proof. For (1), let’s take the normalization

ν : Xν → X,

recall that for a reduced complex space with finite many irreducible component, the normalization
is a bimeromorphic map. So that f : X → S is Moishezon iff the restriction on each component Xi

are Moishezon.

For (2), by the Chow lemma (Theorem 3.12), we can find some locally projective morphism such
that X∗ is smooth and h is a bimeromorphic S-morphism.

X∗ X

S

h

g f

We then take the inverse image of the analytic subspace X ′ denote it Z = h−1(X ′). (we can
assume the inverse image has reduced structure). Since the restriction of the projective morphism
on g|Z : Z → S is still locally projective. And by construction, clearly the morphism Z → X ′ is
surjective. And therefore, by Proposition 3.14, we know that X ′ → S is a Moishezon morphism.
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Restriction on the image side will also preserve the Moishezon condition.

Proposition 3.16 (A morphism is Moishezon iff it’s Moisheozn onto its image). Let f : X → S
be a proper morphism between analytic spaces, let f ′ : X → f(X) = Y ⊂ S be the restriction,
then f is Moishezon (resp. projective) iff f ′ is Moishezon (resp. projective).

Proof. It’s enough to prove the case for projective morphism case (and Moishezon morphism case
follows easily).

To see this, assume that we the morphism f : X → S is projective, by definition there it factor
through the X ↪→ Pn

S → S. Doing base change on Y ↪→ S, proves the projective of X ↪→ PY → Y .

Converse direction is clear, since The composition X → f(X) ↪→ S can be written as:

X ↪→ Pn
f(X) → f(X) ↪→ S.

Since Pn
f(X) = Pn

S ×S f(X), we can rewrite the morphism as:

X ↪→ Pn
S ×S f(X) ↪→ Pn

S → S,

where the second second inclusion is because f(X) ↪→ S and so it’s the projective bundle.

Proposition 3.17. When the base is Moishezon then the total space is Moishezon iff the morphism
is Moishezon.

Proof. We first prove that morphism between Moishezon space is a Moishezon morpihsm. Let us
define the graph embedding to be

ι : X → X × S, x 7→ (x, f(x)),

since X is Moishezon it’s bimeromorphic to a projective variety, as the diagram below shows

X X × S Xp × S

S

ι

f
π

πp

Clearly, πp is a projective morphism. And consequently π is a Moishezon morphism. And finally
by Proposition 3.15, the morphism f : X → S is again Moishezon.

Conversely, if the morphism is Moishezon, and S is Moishezon space. Then there exist bimeromor-
phic modifications such that the following diagram commute

Xp X ′ X

Sp S

12
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Where X ′ → S is a projective morphism and Sp is a projective variety. Since the base change
preserve the projective condition, easy to see that Xp → Sp is a projective morphism over Sp. And
therefore Xp is a projective variety. By Proposition 3.14, X ′ is a Moishezon space. Since X ′ → X
is bimeromorphic, this implies that X is also Moishezon.

Proposition 3.18 ([Kol22, Lemma 15]). Let g : X → S be a proper, generically finite, dominant
morphism of normal, complex, analytic spaces. Then Ex(g) → S is Moishezon.

Proof. We will prove the result under the additional assumption that S is Stein. By the geometric
Noether normalization theorem, there exists a finite morphism

S → CdimS .

After replacing the base by CdimS , we can assume that smooth locus of S is dense in g(Ex(g)).
Note that, by Proposition 3.13, if the restriction on CdimS is Moishezon, then so will the restriction
on S. We will prove the result by induction on dimension.

We first define the base case (g0 : X0 → S0) := (g : X → S). Let E0 be a g0 exceptional divisor,
with the image Z0 = g0(E0). We then inductively define the morphism gi+1 : Xi+1 → Si+1 as
follows. Assume that we already construct gi : Xi → Si, we then blow up Si along Zi. We
then blow up Si along Zi and let Si+1 be the normalization of the blow-up BlZiSi. Since Si is
reduced, this will induce a generic finite map ϕ : Xi 99K Si+1. So that by the universal property
of the normalization, the generic finite morphism gi : Xi → Si lift to a generic finite morphism
gi+1 : Xi+1 → Si+1, where Xi+1 is the normalization of the graph of the map ϕ : Xi 99K Si+1.

Xi+1 Si+1 = BlZi(Si)
ν

Γϕ BlZi(Si)

Xi Si

gi+1

ϕ

gi

Let Ei+1 ⊂ Xi+1 denote the bimeromorphic transform of Ei. (Note that Xi+1 → Xi is an isomor-
phism over an open subset of Ei). We then compute the vanishing order a(Ei, Si) of Jacobian of
gi along Ei. We claim that

a (Ei+1, Si+1) ≤ a (Ei, Si) + 1− codim (Zi ⊂ Si) .

Thus eventually we reach the situation when codim (Zi ⊂ Si) = 1, indeed if codim (Zi ⊂ Si) ≥ 2
then the Jacobian of gi along Ei will eventually goes to zero. Contradiction.

Thus by comparing the dimension we know when restrict the morphism Xi → Si to Ei → Zi it will
become a generic finite morphism. Since Si+1 → Si is projective, the composition Zi → Z0 will be
a locally projective morphism.

Ei Zi

Z0
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By Proposition 3.13, we know that Ei → Z0 is a Moishezon morphism. Since the strict transform
Ei → E0 is a dominant morphism, by Proposition 3.14, we know that E0 → Z0 is also Moishe-
zon morphism. Finally, by Proposition 3.15 and Proposition 3.16, we know that Ex(f) → S is
Moishezon.

Theorem 3.19 (Fibers of the Moishezon morphism are Moishezon spaces, [Kol22, Corollary 16]).
The fibers of a proper, Moishezon morphism are Moishezon.

Proof. Let g : X → S be a proper, Moishezon morphism. It is bimeromorphic to a projective
morphism Xp → S. We may assume Xp to be normal. Let Y be the normalization of the closure
of the graph of X 99K Xp.

Y

X Xp

S

Fix now s ∈ S. Let Zs ⊂ Xs be an irreducible component, since given a proper dominant morphism,
there exist at least one irreducible component dominant the base, there existWs ⊂ Ys an irreducible
component that dominates Zs. And by Proposition 3.14 and Proposition 3.15, it’s enough to show
that Ws is Moishezon. We divide the problem into two cases:

If π : Y → Xp is generically an isomorphism along Ws, then Ws is bimeromorphic to an irreducible
component of Xp

s , hence Moishezon.

Otherwise Ws ⊂ Ex(π). Now Ex(π) → Xp is Moishezon by Proposition 3.18. And by induction on
dimension, since dimEx(π) < dimX = dimY , the fiber Ws is Moishezon.

Proposition 3.20 ([Kol22, Example 13]). Let Z be a normal, projective variety with discrete
automorphism group. Let g : X → S be a fiber bundle with fiber Z over a connected base S. Then
g is Moishezon ⇔ g is projective ⇔ the monodromy is finite.

Remark 3.21. The monodromy here is different from the cohomological monodromy. Here the
monodromy is refered as the fiber bundle monodromy

ρ : π1(S) → G ⊂ Aut(Z)

where G ⊂ Aut(Z) is the structure group of the fiber (e.g. when the fiber bundle is principal
G-bundle, then the structure group is simply the group G). Finite monodromy condition means
that im(ρ) ⊂ G is a finite subgroup.

Before proving the theorem, let us state a lemma from fiber bundle theory, that is useful in what
follows (which can be viewed as generalization of Ehersmann theorem over a simply connected base,
when the base is simply connected, the fiber bundle is automattically trivial).

Lemma 3.22. Let g : X → S be a fiber bundle with trivial monodromy group, then the fiber
bundle is actually a trivial fiber bundle.

14
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The following proposition about the automorphism of polarized projective variety will be useful in
the proof.

Proposition 3.23. Let Z be a projective variety, and L an ample line bundle over Z. Then
Aut(Z,L) = {ϕ ∈ Aut(Z) | c1(ϕ∗L) = c1(L)} is finite if the automorphism group Aut(Z) is
discrete.

Proof. Let
ϕ : Z → Z ∈ Aut(Z,L),

consider the graph Γϕ ⊂ Z × Z, thus the Hilbert polynomial of Γϕ relative to L⊠ L is given by

Hϕ(n) = χ(Γϕ, (L⊠ L)n) = χ(Z,L⊗n ⊗ ϕ∗(L⊗n)).

On the other hand, since c1(ϕ
∗L) = c1(L), so that easy to see that L⊗n ⊗ ϕ∗(L⊗−n) is numerical

trivial, and thus

H(n) = χ(Z,L⊗n ⊗ ϕ∗(L⊗n)⊗ L⊗n ⊗ ϕ∗(L⊗−n)) = χ(Z,L⊗2n),

which is independent of ϕ and denote it P (n) = Hϕ(n). So that the graph lies on HilbPZ×Z (with
fixed Hilbert polynomial P (n)), which is of finite type. Thus contains finite many irreducible
components (by Noetherian proprty). On the other hand, since Z is projective, each irreducible
component of the Hilbert scheme is proper. Thus Aut(Z,L) is finite.

The idea of the proof of the theorem is provided by Professor Kollár.

Proof of the theorem. Only needs to show that (1) implies (3) and (3) implies (2). For (3) implies
(2), we try to take the étale base change so that the fiber bundle becomes trivial bundle. We
can do as follows, Consider ρ(π1(S)) ⊂ Aut(Z) is finite, let S′ → S be the corresponding finite
(unbranched) cover that kills the monodromy. Indeed since we have the

ρ : π1(S) → G

then the kernel of ker(ρ) is a subgroup of π1(S) is finite index, therefore by the Galois correspondence
for covering, there exist finite étale cover of the base

S̃ → S,

such that monodromy of the fiber bundle under the base change becomes trivial, then by the
previous lemma, after the base change the fiber bundle becomes trivial bundle

Z × S̃ → S̃,

clearly the morphism is projective and admits an relative ample line bundle L (since Z is projective).
And therefore if we define

L′ =
⊗
g∈Γ

g∗L.

Since L′ is monodromy invariant, the ample line bundle will descend to the original fiber bundle
g : X → S and thus g is a projective morphism.

15
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For (1) implies (3). Since g : X → S is Moishezon, by Definition 3.9, there exists a g-big (rank 1
reflexive sheaf) H on X (since it’s fiber bundle so the restriction on Z is again big and denote it
also as H). Given an ample line bundle L on the fiber Z, we consider the monodromy action on
L, which pulls back the ample line bundle to another ample line bundle Lγ = ρ(γ)∗L.

Note that under the monodromy action, the intersection

d := H · (Lγ)
n−1,

remain the same for all γ.

We then consider the linear functional

ℓ : N1(Z)R → R, M 7→Mn−1 ·H,

if we restrict the linear functional on the ample cone Amp(Z), then

Sd = {M ∈ N1(Z)R ∩Amp(Z) |Mn−1 ·H = d},

is a bounded slice. To see this, by the Khovanskii-Teissier inequality we have(
H ·Mn−1

)n ≥ (Hn) (Mn)n−1 ,

thus we get

vol(M) ≤
(
dn

Hn

) 1
n−1

,

so that it’s bounded (for a fixed H). Thus the slice contains only finite many lattice points of
NS(Z).

#{M ∈ NS(Z) ∩Amp(Z) | ℓ(M) = d} <∞.

In particular, the ample line bundle on the monodromy orbit is finite

Γ · L = {Lγ := ρ(γ) · L | γ ∈ π1(S)} ⊂ {M ∈ NS(Z) ∩Amp(Z) | ℓ(M) = d}.

This will force the monodromy to be finite, indeed apply the orbit-stablizer theorem

|Γ| = |Γ · L||Stab(L)| < +∞

Thus only needs to prove the Stab(L) = Aut(Z,L) = {ϕ ∈ Aut(Z) | ϕ∗L = L} is finite. On the
other hand, since Aut(Z) is discrete, by Proposition 3.23, this means that Stab(L) = Aut(Z,L) is
finite.

4 Examples

In this section, we will present varies examples related to the Moishezon space and Moishezon
morphism.

16



4.1 The Hironaka’s example 17

4.1 The Hironaka’s example

Hironaka discovered a bunch of complete non-projective 3-fold which is called Hironaka’s varieties.
Note that based on the construction of Hironaka, we can from almost all the projective varieties
construct some Moishezon spaces, that is why we said at the beginning that Moishezon spaces are
versatile in birational geometry. (However, this is not true in dimension 2, since all the smooth
Moishezon surface are actually projective, see e.g. [GPR94]). The major reference of this part of
note is the paper by Ulrich Thiel (see https://ulthiel.com/math/wp-content/uploads/other/
hironakas_example.pdf).

Given a smooth projective threefold, which contains two rational curves transversely intersection
at two points. Assume that two rational curves are C and D that intersect at the point P,Q.

We then take two steps, blow up

X1 = Bl(D\P )′
(
BlC\P (X\P )

) π2−→ BlC\P (X\P ) π1−→ X\P

X2 = Bl(C\Q)′
(
BlD\Q(X\Q)

) σ2−→ BlD\Q(X\Q)
σ1−→ X\Q,

Note that if we define U = X − {P,Q}, then π−1(U) ∼= σ−1(U). In particular, we can glue X1 and
X2 along π−1(U) and σ−1(U). In the picture below, we glue the red exceptional surface on the
right hand side with the black exceptional surface on the left hand side (denote it S1) and the blue
exceptional surface on the left hand side with the black exceptional surface on the right hand side
(denote it S2). (see pictrue 2). By the gluing lemma, there exists a morphism f : H → X and the
restriction of the morphism on S1, S2 as f1 = f |S1 : S1 → C and f2 = f |S2 : S2 → C.

Figure 2: Construction of the Hironaka’s variety

17
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4.2 Flop the lines on general quntic threefold produce Moishezon variety 18

We claim that Hironaka’s variety is non-projective. The idea to prove the non-projective is to find
some curve on the surface S = S1 ∪ S2 which has positive degree but add up to 0.

The key observation is that f−1(P ) (resp. f−1(Q)) decompose into two split projective lines LQ

and L′
Q in S1 (resp. LP and L′

P in S2). (see the precise statement below).

Choose two points A ∈ C − {P,Q} and B ∈ D − {P,Q}. Since all the points on a rational curve
are linear equivalent, therefore

A ∼C Q =⇒ f−1
1 (A) ∼S1 f

−1
1 (Q) = LQ + L′

Q

B ∼D P =⇒ f−1
2 (B) ∼S2 f

−1
2 (P ) = LP + L′

P

and Push forward of cycle, we get equivalence on S.

I : f−1(A) ∼S f
−1(Q) = LQ + L′

Q

II : f−1(B) ∼S f
−1(P ) = LP + L′

P

On the other hand we also that B,Q lies in the same rational curve, so that

III : B ∼D Q⇒ f−1
2 (B) ∼S2 f

−1
2 (Q) ⇒ f−1(B) ∼S L

′
Q

and combined then together, we get

f−1(A) + f−1(B) ∼S f
−1(A) + f−1(B) ⇒ LQ + L′

Q + LP + L′
P ∼S L

′
Q + L′

P

⇒ LQ + LP ∼S 0

If there exist some ample divisor on A, then both LQ ·A > 0 and LP ·A > 0 contradict the linearly
trivial relation above. Therefore the only possible case is Hironaka’s variety is non-projective.

4.2 Flop the lines on general quntic threefold produce Moishezon variety

4.3 Locally Moishezon morphism which is not globally Moishezon

There are rational and K3 surfaces with infinite, discrete automorphism group. These lead to fiber
bundles over the punctured disc D◦ that are locally Moishezon but not globally Moishezon (using
the Proposition 3.22).

4.4 Singular Kähler Moishezon space needs not to be projective

By blowing down elliptic curves, such an easy example is not possible. Instead, consider a cubic
C ⊂ P2 and let x1, . . . , x10 be general points on C. Let f : X → P2 be the blow-up of these
point. Then the strict transform Ĉ of C in X is elliptic with Ĉ2 = −1. It can be shown that the
blow-down of Ĉ is not projective.

4.5 Fiberwise projective morphism needs not to be projective morphism

Let S0 := (g = 0) ⊂ P3
x and S1 := (f = 0) ⊂ P3

x be surfaces of the same degree. Assume that
S0 has only ordinary nodes, S1 is smoothPic (S1) is generated by the restriction of OP3(1) and S1

18
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does not contain any of the singular points of S0. Fix m ≥ 2 and consider

Xm := (g − tmf = 0) ⊂ P1
x × A1

t .

The singularities are locally analytically of the form xy+z2−tm = 0. ThusXm is locally analytically
factorial if m is odd. If m is even then Xm is factorial since the general fiber has Picard number 1,
but it is not locally analytically factorial; blowing up

(
x = z − tm/2 = 0

)
gives a small resolution.

Thus we get that (4.1) Xm is bimeromorphic to a proper, smooth family of projective surfaces iff
m is even, but (4.2) Xm is not bimeromorphic to a smooth, projective family of surfaces.
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Fiberwise Bimeromorphic Problems Summer 2025

Note 2 — 2025-07-09 (draft version)

Yi Li

1 Overview

The aim of this note is to study the fiberwise bimeromorphic problems. To be more concrete, we
consider the following two problems. The first one is:

Question 1.1. Let

π : X → B and π′ : X ′ → B,

be proper flat morphisms from a complex analytic space to a smooth connected curve B. Assume
that the generic fibers of π and π′ are bimeromorphic. Under what conditions, the special fibers
between these two families also admit a certain bimeromorphic relation?

The second one focuses on the Moishezon morphisms, under which condition we can let a Moishezon
morphism fiberwise bimeromorphic to a projective morphism:

Question 1.2. Let g : X → D be a flat, proper, Moishezon morphism. Under which conditions, it
is actually fiberwise bimeromorphic to a projective morphism gp : Xp → D?

We will discuss the first question in Sections 2–4 and the second question in Section 5. The main
references for this note are [Kol22] and [KT19].
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2 A Fiberwise Birational Criterion

We first recall the definition of the meromorphic S map that we introduced in the first time.

Definition 2.1 (Meromorphic S-map). Let X,Y be reduced complex spaces. We call the S-map
a meromorphic S-map

Γ

X Y

S

p q

α

f g

if there exists a subvariety Γ ⊂ X ×S Y with the restriction of the first projection p : Γ → X be a
proper bimeromorphic morphism. Moreover, if the restriction on the second projection q : Γ → Y
is also a proper bimeromorphic morphism, then we call α proper bimeromorphic S-map.

Definition 2.2 (Fiberwise bimeromorphic map, [Kol22, Definition 26]). Let gi : Xi → S be a
proper morphisms. A bimeromorphic S-map ϕ : X1 99K X2/S is fiberwise bimeromorphic if ϕ
induces a bimeromorphic mapϕs : X

1
s 99K X2

s for every s ∈ S.

Remark 2.3 (Fiberwise bimeromorphic ̸= fibers bimeromorphic equivalent, [CRT25, Example
2.15]). Let Fn = P(OP1 ⊕OP1(n)) → P1 be the Hirzebruch surface of index n. By construction easy
to see that all the Hirzebruch surface are birational equivalent to P1 × P1. Let Z be any compact
complex manifold. So that Fn × Z → P1 is binational equivalent to (P1 × P1)× Z → P1.

Blp1,··· ,pn(P1 × P1)× Z

P1 × P1 × Z Fn × Z

P1

p q

q◦p−1

Note that fibers of these two families are birational equivalent (as both side have fiber P1 × Z).
However the restriction of the map q ◦ p−1 does not give the bimeromorphic map of the fiber (since
the strict transform of the fibers of P1 × P1 × Z via p−1 will be contracted by q).

Although the bimeromorphic map needs not to be fiberwise bimeromorphic in general, it is indeed
fiberwise bimeromorphic on a dense open subset. As the following proposition shows.

Proposition 2.4 (Bimeromorphic on the generic fiber). Let f : X 99K Y be a bimeromorphic
S-map between two proper surjective family g : X → S, h : Y → S over the base S. Then on the
generic fiber, the map f will induce a bimeromorphic fs : Xs 99K Ys.

2
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Proof. Since f is bimeromorphic, by definition, the graph Γ ⊂ X ×S Y will induce two bimeromor-
phic morphisms

p : Γ → X, q : Γ → Y,

such that there exists some non-empty analytic Zariski open subset UX ⊂ X, UY ⊂ Y with
p : p−1(UX) → UX , q : q−1(UY ) → UY be isomorphisms. On the generic fiber, the dimension
equalities hold

dimXs = dimX − dimS, dimYs = dimY − dimS.

On the other hand, if we denote the analytic subset EX = X − UX and EY = Y − UY , then the
intersection with the generic fiber Xs (resp. Ys), say

EX ∩Xs = EX,s, (resp. EY ∩ Ys = EY,s),

are proper analytic subset in Xs (resp. Ys). Indeed, only needs to show that dimEX,s < dimXs

(resp. dimEY,s < dimYs). As intersection of analytic subvariety is still analytic subvariety and
dimension strict less, it’s automatically proper analytic subset. Thus by definition ps : Γs → Xs

(resp. qs : Γs → Ys) are bimeromorphic morphisms. To see that dimEX,s < dimXs, we divide
it into two cases: (1) If g(EX) ⊂ S is proper analytic subset, then clearly the generic fiber has
dimEX,s = 0. (2) If g(EX) = S then the generic fiber dimEX,s = dimEX − dimS and we know
that dimEX < dimX and therefore

dimEX,s = dimEX − dimS < dimX − dimS = dimXs.

Since the base change preserves the properness, we have ps : Γs → Xs, qs : Γs → Ys are still proper.
Thus, complete the proof.

We now prove the first main theorem of this note, which is about the specialization of the birational
map when the pluricanonical system is non-empty.

Proposition 2.5 (Kollár’s Specialization of birational map, [Kol23, Proposition 1.25]). Let fi :
Xi → B be two smooth families of projective varieties over a smooth curve B. Assume that the
generic fibers X1

b and X2
b (for b ̸= 0) are birational, and further assume that the pluricanonical

system
∣∣∣mKXi

b

∣∣∣ is non empty for some m > 0. Then for every b ∈ B, the fibers X1
b and X2

b are

birational.

Proof. Pick a birational map ϕ : X1
b 99K X2

b (for the generic fiber), and let Γ ⊂ X1 ×B X2 be the
closure of the graph of ϕ. Let Y → Γ be the resolution of the graph with projections pi : Y → Xi.

Y

Γ

X1 X2

B

p1 p2

f1 f2

3
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Note that by definition, both of the pi are open embeddings on Y \ (Ex (p1)∪ Ex (p2)).

Thus if we prove that neither p1 (Ex (p1) ∪ Ex (p2)) nor p2 (Ex (p1)∪ Ex (p2)) contains a fiber of
f1 or f2, then p2 ◦ p−1

1 : X1 99K X2 (it needs not to be birational) restricts to a birational map
X1

b 99K X2
b for every b ∈ B.

We may assume that B is affine (as we only care about the special fiber, thus we can focus on the
affine base around b) and let Bs |mKXi | denote the set-theoretic base locus. Let Li = OXi(mKXi).
The direct image Ei = fi∗Li as a torsion free sheaf is locally free on the smooth curve B (so that
the vanishing locus of a section of Ei is a subvariety).

By assumption |mKXi
b
| ≠ ∅ for generic b ∈ B, we claim that |mKXi | is non-empty as well. Indeed,

since the restriction map
H0(Xi,mKXi) → H0(Xi

b,mKXi
b
),

is surjective on the generic fibers. Thus, the pluricanonical system on the generic fiber satisfies
|mKXi |Xi

b
= |mKXi

b
| ≠ ∅. In particular, this means that |mKXi | ≠ ∅.

On the other hand, since H0(X,mKXi) ̸= 0 and the base is affine, for any point s ∈ B, there exists
a non-zero section

0 ̸= σ ∈ H0(B, Ei),

such that σ(s) ̸= 0. Therefore consider the restriction commutative diagram (note that in general
it’s not clear the base change morphism H0(Xi

s, Li|Xi
s
) → Ei(s) is isomorphism or not on the special

fiber)

H0(Xi, Li) H0(Xi
s, Li|Xi

s
)

H0(B, Ei) Ei(s)

res

≃

res

there exists a section σ′ ∈ H0(Xi, Li) which maps down to σ ∈ H0(B, Ei) such that σ(s) ̸= 0. So
that σ′|Xi

s
̸= 0 in H0(Xi

s, Li|Xi
s
). And therefore the base locus Bs|mKXi | cannot contain the fiber.

Since Xi are smooth,

KY ∼ p∗iKXi + Ei, where Ei ≥ 0 and SuppEi = Ex (pi) .

So that every section of OY (mKY ) pulls back from Xi, Thus

Bs |mKY | = p−1
i (Bs |mKXi |) + SuppEi,

Comparing these for i = 1, 2, we conclude that

p−1
1 (Bs |mKX1 |) + SuppE1 = p−1

2 (Bs |mKX2 |) + SuppE2,

Therefore,

p1 (SuppE2) ⊂ p1 (SuppE1) + Bs |mKX1 |

Since E1 is p1-exceptional, p1 (suppE1) has codimension ≥ 2 in X1, hence it does not contain
any of the fibers of f1. Combined with Bs |mKX1 | does not contain any of the fibers either.

4
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Thus, p1 (Ex (p1) ∪ Ex (p2)) does not contain any of the fibers, and the same argument shows for
p2 (Ex (p1) ∪ Ex (p2)).

As a remark by [Kol23], the result holds true even when the pluricanonical systems are empty.
That is what we will prove in the next section.

3 Kontsevich-Tschinkel’s Fiberwise Birational Theorem

Theorem 3.1 ([KT19, Theorem 1]). Let

π : X → B and π′ : X ′ → B

be smooth proper morphisms to a smooth connected curve B, over a field of characteristic zero.
Assume that the generic fibers of π and π′ are birational over the function field of B. Then, for
every closed point b ∈ B, the fibers of π and π′ over b are birational over the residue field at b.

We first introduce some new notions that needed in the proof.

Definition 3.2 (semi-ring). A semi-ring (S,+,×) consists of a set S equipped with two binary
operations +,×. Such that + makes S a commutative monoid (which does not need to be an
Abelian group compared to the definition of a ring).

Definition 3.3 (Burnside semi-ring over a field k, [KT19, Definition 2]). The Burnside semi-
ring Burn+(k) of a field k is the set of ∼k equivalence classes of smooth schemes of finite type
over k endowed with a semi-ring structure where multiplication and addition are given by disjoint
union and product over k. (here the ∼k equivalence of two schemes X,X ′ are defined as follows:
X/k ∼k X ′/k if and only if X and X ′ are k-birational). To be more precise, the addition and
multiplication of semi-ring structure is defined as follows:

(a) Addition: Disjoint union [X] + [Y ] = [X ⊔ Y ].
(b) Multiplication: Cartesian product [X] · [Y ] = [X × Y ].

We then introduce the Grothendieck ring, and we denote Burn(k) the Grothendieck ring generated
by Burn+(k).

Definition 3.4 (The Grothendieck ring Burn(k)). The Grothendieck ring Burn(k) thhat is as-
sociated to the Bunrside semi-ring Burn(k)+ is defined as the set of equivalence classes of pairs
([X], [Y ]), where [X], [Y ] ∈ Burn(k)+. Intuitively, ([X], [Y ]) represents the ”difference” [X] − [Y ].
With the equivalence relation: We say ([X], [Y ]) ∼ ([X ′] , [Y ′]) if there exists [Z] ∈ Burn(k)+ such
that:

[X] +
[
Y ′]+ [Z] =

[
X ′]+ [Y ] + [Z].

The ring Operations is defined as follows

(a) Addition: ([X], [Y ]) + ([X ′] , [Y ′]) = ([X] + [X ′] , [Y ] + [Y ′]).
(b) Multiplication: ([X], [Y ]) · ([X ′] , [Y ′]) = ([X ×X ′] + [Y × Y ′] , [X × Y ′] + [Y ×X ′]).

Remark 3.5. The reason to introduce the Grothendieck ring over the Burnside semi-ring is that
it allows one to implement formal subtraction, cut and paste operations.

5
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Remark 3.6. Note that we can decompose the

Burn(k) = ⊔n≥0Birn(k),

where Birn(k) denotes k-birational equivalent class of smooth variety of dimension n. Each class
can be denoted by [L/k] with L = k(X).

Proposition 3.7 (Existence of SNC model). Let R be a complete dvr, let K be the fractional field
(i.e. the generic point of Spec(R)) and k the residue field (i.e. the special point of Spec(R)). Let
X/K be a geometric connected smooth proper variety defined over K, then there exists a regular
flat separated R-scheme of finite type X , endowed with an isomorphism of K-scheme XK → X
such that the special fiber Xk is a divisor with strict normal crossing. We call X /R is a SNC
model of X/K.

Proof. Let us first briefly sketch out the idea. We first reduce the problem to the projective case.

Remark 3.8. The SNC model also plays an important role in the

Definition 3.9 (Specialization map, [KT19, (3.2)]). Let o be a complete dvr, letK be the fractional
field (i.e. the generic point of Spec(o)) and k the residue field (i.e. the special point of Spec(o)).
We define

ρn : Birn(K) → Z [Birn(k)] ,

as follows: given a smooth projective family XK → Spec(K) (with the function field L := K(XK)),
choose one of family

π : X → Spec(o),

where π is proper, such that the generic fibers is XK and special fiber

X0 =
⋃
i∈I

diDi,

is a SNC divisor, with the strata DJ :=
⋂

j∈J Dj . We then define the specialization map to be

ρn([L/K]) :=
∑

∅≠J⊆I

(−1)#J−1
[
DJ × A#J−1/k

]

One of the main difficulties in the proof is verifying that the specialization map ρn : Birn(K) →
Z[Birn(k)] is well-defined (i.e., it does not depend on the choice of the family X → D) or represen-
tative X in Birn(X). We omit the proof of this part; for details, see [KT19, Theorem 4]).

Proof of Theorem 3.1. We first reduce the problem onto Spec of a complete dvr. Let π : X → B
be a smooth proper morphism to a smooth connected curve B over k with fiber X over the generic
point of B. Let K = k(B) be the function field of B. Let κb be the residue field at b, a finite
extension of k. Let Kb be the completion of K at b. Then Kb is a local field with residue field κb.
Let

ϕb : K → Kb,

be the canonical inclusion. By functoriality, it defines a homomorphism

ϕb,∗ : Burn(K) → Burn (Kb) .
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We then consider the specialization map over the complete dvr Kb. Note that we have the special-
ization homomorphism

ρ : Burn (Kb) → Burn (κb) ,

and the following identity
[Xb/κb] = ρ (ϕb,∗([X/K])) ,

which follows immediately from the Definition 3.9 of ρ, since the special fiber is smooth and irre-
ducible. This shows that the birational type of the special fiber is determined by the birational
type of the generic fiber.

4 Fiberwise Bimeromorphic Criterion using Plurigenera

In this section, we will give a criterion for fiberwise bimeromorphic map using plurigenera. For
readers who want to know more about this, please refer to [CRT25].

Lemma 4.1 ([GPR94, Theorem 1.19]). Let f : X → Y be a proper surjective holomorphic map,
assume that X is reduced and irreducible. Then the set

{y ∈ Y | dimxXy > dimX − dimY for some x ∈ Xy} .

is analytic in Y and of codimension at least 2.

Proposition 4.2 ([CRT25, Theorem 1.4]). Let X,Y and S be complex analytic spaces. Assume
that X is reduced (not necessarily normal) and irreducible, Y is normal, and S is a smooth curve.
Assume further that both π1 : X → S and π2 : Y → S are proper surjective holomorphic maps.
Suppose that there is a bimeromorphic morphism f : X → Y over S. For some t ∈ S, if Dt

is an irreducible component of Yt that is of codimension 1 in Y , then there exists an irreducible
component Ct (equipped with the reduced structure) of Xt that is bimeromorphic to Dt, induced
by f .

In particular, if the fibers of X → S and Y → S are irreducibles then f is fiberwise bimeromorphic
map.

Proof. Since X is reduced and irreducible, by lemma above, we have the set of points that dimXy =
0 is a big open subset in Y (with the complement an analytic subset V such that codimV (X) ≥ 2).
Since Y is normal, and f : X − f−1(V ) → Y − V is bijective. Thus f : X − f−1(V ) → Y − V is
biholomorphic. Additionally, f is surjective by the definition of a bimeromorphic morphism. Con-
sequently, there exists an irreducible component Ct of Xt such that f (Ct) = Dt by the irreducibility
of Dt.

In view of the codimensions of V and Dt, it follows that Dt ⊈ V , and consequently, Ct ⊈ f−1(V ).
Clearly, Dt ∩ V is a thin analytic subset of Dt, and Ct ∩ f−1(V ) is a thin analytic subset of Ct.
Hence, one can easily check by definition that f : Ct → Dt is bimeromorphic.

We next prove a simplify version of the fiberwise bimeromorphic cirterion using plurigenera, for a
much more general version, please refer to [CRT25].
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Theorem 4.3 ([CRT25, Theorem 1.6]). Let

π1 : X → S, π2 : Y → S

be two (locally) Moishezon morphism with irreducible fibers that admits canonical singularities,
such that κ(X0) ≥ 0. Then the bimeromorphic map that connects π1 and π2 is indeed fiberwise
bimeromorphic.

Let us briefly sketch out the idea. We first take the resolution of indeterminacy, by further resolution
we can guarantee the generic fibers of W → S being smooth.

W

X Y

S

p q

π1 π2

We claim that the strict transform X̃0 = p−1
∗ (X0) and the strict transform Ỹ0 = q−1

∗ (Y0) must
coincide. For otherwise, since plurigenera is bimeromorphic invariant we have Pm(X0) = Pm(X̃0),
Pm(Y0) = Pm(Ỹ0) and Pm(Wt) = Pm(Xt) = Pm(Yt). On the other hand, since the family W → S
is Moishezon, by the lower semi-continuity of the plurigenera (for Moishezon morphism), we have
Pm(X̃0) + Pm(Ỹ0) ≤ Pm(Wt). Since Y → S be a Moishezon morphism with fiberwise canonical
singularities, the plurigenera remain constant i.e. Pm(Yt) = Pm(Y0). Putting those together, we
have

Pm(X0) + Pm(Ỹ0) = Pm(X̃0) + Pm(Ỹ0) ≤ Pm(Wt) = Pm(Xt) = Pm(Yt) = Pm(Y0) = Pm(Ỹ0)

so that the plurigenera Pm(X0) = 0 which contradicts κ(X0) ≥ 0.

5 The Fiberwise Bimeromorphic Conjecture for Moishezon Mor-
phisms

In the last section, we will prove the following conjecture under the additional assumption that the
center fiber is KLT and not uniruled.

Conjecture 5.1 (Fiberwise bimeromorphic conjecture for Moishezon morphism, [Kol22, Conjec-
ture 5]). Let g : X → D be a flat, proper, Moishezon morphism. Assume that X0 has canonical
(resp. log terminal) singularities.

Then g is fiberwise birational to a flat, projective morphism gp : Xp → D such that

(1) Xp
0 has canonical (resp. log terminal) singularities,

(2) Xp
s has terminal singularities for s ̸= 0, and

(3) KXP is Q-Cartier.
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Remark 5.2. Before continuing our discussion of this conjecture, let us first look closely at what
this conjecture is about. The conjecture shows that the flat Moishezon morphism is not only
bimeromorphic to some projective model but it is indeed fiberwise bimeromorphic to some projective
model, as long as the singularity on the central fiber is nice enough.

Kollár verifies the conjecture when the central fiber is KLT and not uniruled. Before proving the
theorem, let us list some intermediate results that will be used.

Proposition 5.3 (Inversion of adjunction, [Kol22, Proposition 30]). Let X be a normal complex
analytic space, X0 ⊂ X a Cartier divisor, and ∆ an effective R-divisor such that KX + ∆ is
R-Cartier. Then (X,X0 +∆) is PLT in a neighborhood of X0 iff

(
X0, ∆|X0

)
is KLT.

Proposition 5.4 (Existence of canonical modification, [Kol22, Corollary 38]). Let f : X → D be
a flat, proper, Moishezon morphism. Assume that X0 is log terminal. Then X has a canonical
modification π : Xc → X, such that
(a) Xc

0 is log terminal and,
(b) π is fiberwise birational.

Proof. The proof uses some algebraic approximation technique, see [Kol22].

Lemma 5.5 ([Kol22, Lemma 31.1]). Let X → S be a proper, Moishezon morphism, D an R-divisor
on X, and A a big R-divisor on X such that Bdiv(A) = ∅. Then, for every prime divisor F ⊂ X,

coeffF Bdiv
− (D) = lim

ϵ→0
coeffF Bdiv

− (D + ϵA)

Lemma 5.6 ([Kol22, Lemma 31.2]). Let Xi → S be proper, Moishezon morphisms, h : X1 → X2

a proper, bimeromorphic morphism, D2 a pseudo-effective, R-Cartier divisor on X2, and E an
effective, h-exceptional divisor. Then

Bdiv
− (E + h∗D2) ≥ E.

The following proposition is useful in the proof.

Proposition 5.7. Let f : X → U be a proper morphism between complex varieties, (X,∆) a DLT
pair and ϕ : X 99K XM be a minimal model for KX + ∆ over U . Then the set of ϕ-exceptional
divisors coincides with the set of divisors contained in B− (KX +∆/U).

Proof. Let p : Y → X and q : Y → XM be a common resolution. Since ϕ is (KX +∆)-negative,
we have that p∗ (KX +∆) = q∗ (KXM

+ ϕ∗∆) + E where E is effective, q-exceptional and the
support of p∗E is the set of ϕ-exceptional divisors. Since the minimal model assumption, we have
Nσ (p

∗ (KX +∆) /U) = E. we get
p∗E = Nσ(KX +∆).

Lemma 5.8. Let b0 = 1, b1, . . . , bn be real numbers which are linearly independent over Q, and
suppose that the divisor

∑n
i=0 biBi is R-Cartier. Then each of the divisors Bi is Q-Cartier.

Having introduced a bunch of lemma will be used in the proof. We can now dive into the proof of
the last main theorem of this note.
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Theorem 5.9 (A flat Moishezon morphism with KLT and non-uniruled central fiber will be fiber-
wise bimeromorphic to a projective morphism, [Kol22], Theorem 28). Let g : X → D be a flat,
proper, Moishezon morphism. Assume that

1. X0 has log terminal singularities and

2. X0 is not uniruled

Then

(a) g is fiberwise birational to a flat, projective morphism gp : Xp → D (possibly over a smaller
disc),

(b) Xp
0 has log terminal singularities,

(c) Xp
s is not uniruled and has terminal singularities for s ̸= 0,

(d) KXp is Q-Cartier

Proof. We take a resolution of singularities Y → X such that Y → D is projective, and then take
a relative minimal model of Y → D. We hope that it gives what we want. There are, however,
several obstacles.

Step 1. Take the canonical modification. We need to control the singularities of X. First
for a flat proper Moishezon morphism with KLT central fiber, there exist a canonical modifiction
(Theorem 5.4) which is fiberwise birational and the central fiber is KLT. Thus we in the case that
KX is Q-Cartier.

Indeed by the canonical modificaiton we can find some canonical modification Xc → X such that
Xc is canonical singularity and the the morphism Xc → X is the fiberwise birational. Thus, if we
can prove the result for Xc → D then it will also be true for the X → D (since composition of
fiberwise birational map is again fiberwise birational).

We assume this from now on. Then the inversion of adjunction for PLT pair implies that the
pair (X,X0) is PLT. by setting ∆ = 0 in the inversion of adjunction. (To apply the inversion of
adjunction here we require KX to be Q-Cartier)

Step 2. Take the semi-stable reduction. After a base change z 7→ zr we get gr : Xr → D.
For suitable r, there is a semi-stable, projective resolution h : Y → D; we may also choose it to be
equivariant for the action of the cyclic group G ∼= Zr. All subsequent steps will be G-equivariant.
We denote by XY

0 the birational transform of X0 and by Ei the other irreducible components of
Y0.

Y Xr X

D D

Such that the following conditions hold:
(a) Y is non-singular,

10
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(b) generic fibers are non-singular,
(c) The special fiber is a reduced divisor with SNC support,
(d) Denote that Y0 = XY

0 +
∑

ciEi (with XY
0 be the strict transform on X0), note that the strict

transform XY
0 will dominant X0.

Step 3. Prove the generic fibers Ys are not uniruled (for s ̸= 0). We will prove it by
contradiction, if the generic fibers Ys are uniruled. Then, by Matsusaka’s theorem (see [Kol96,
Theorem VI.1.7]), all the irreducible components of Y0 are uniruled. On the other hand, since XY

0

dominant X0, X0 must be uniruled, a contradiction.

And finally by the BDPP theorem. easy to see KYs is pseudo-effective. (Since we assume that
generic fibers are smooth).

Step 4. Run the MMP. We require the condition that the general fibers are of log general type.
To achieve this, let H be an ample, G-equivariant divisor such that Y0 +H is snc (note that this is
possible by taking H ′ = ⊗n

m=1g ·H, since G is finite group this is well defined ample line bundle).
For ϵ > 0 we get a pair (Y, ϵH) whose general fibers (Ys, ϵHs) are of log general type since KYs is
pseudoeffective by previous step. For such algebraic families, relative minimal models are known
to exist by BCHM. We also know that (Y, Y0 + ϵH) is dlt for 0 < ϵ ≪ 1 (since Y is smooth and
Y0 +H is snc).

Thus we get the (KX + Y0 + ϵH)-relative MMP on the disc D, (Note that the base is an analytic
disc, thus the MMP is in the sense of Fujino [Fuj22] or Kollár-Nicaise-Xu [KNX18]).

(Y, ϵH) (Y m, ϵHm)

D

ϕ

We claim (Y m, Y m
0 + ϵHm) is DLT, and Hm is Q-Cartier for general choice of ϵ and also thus

(Y m, Y m
0 ) is also dlt.

Indeed, Step of MMP will preserve DLT condition (see [BCHM] Lemma 3.10.10.) easy to see
(Y m, Y m

0 + ϵHm) is DLT. On the other hand, by Lemma 5.8, easy to see if ϵ is sufficient general
the Q-linear independent condition satisfies and therefore Hm is indeed a Q-Cartier divisor. And
finally by [KM98, Corollary 2.39] the (Y m, Y m

0 ) is also DLT.

Recall that we have
Bdiv

− (KY + Y0) ≥ (1 + a(Ei, X
r, X0))Ei,

since the discrepancy of a PLT pair a(Ei, X
r, X0) > −1 thus all the exceptional divisors Ei contains

in the divisorial part of the restricted base locus Bdiv
− (KY + Y0). On the other hand

coeffF Bdiv
− (D) = lim

ϵ→0
coeffF Bdiv

− (D + ϵA),

for any prime divisor F . Thus, for sufficiently small ϵ, Ei also contains in the restricted base
locus of KY + Y0 + ϵH (since the coefficients of Ei in Bdiv

− (KY + Y0 + ϵH) is also positive if
coeffEiB

div
− (KY + Y0) > 0). Then, by Proposition 5.7, any MMP will contract those Ei.

Step 5. Prove fiberwise bimeromorphic. By the Cone theorem, those divisors contracted
will be covered by rational curves. However, we assume that XY

0 is not uniruled (thus, it is not

11
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contracted by the MMP). By Theorem 2.4 the generic fiber of X 99K Y m is bimeromorphic, so
one only needs to prove that the central fiber X0 is bimeromorphic to Y m

0 . In fact, since the only
component on Y m

0 is the strict transform of XY
0 , X0 is bimeromorphic to Y m

0 .

Step 6. Check the singularity assumptions. Note that the fibers Ys of the family h : Y → D
is smooth away from Y0 (by the semi-stable assumption) thus (Ys, ϵHs) is terminal for s ̸= 0 and
0 ≤ ϵ ≪ 1 (see [KM98, Corollary 2.35. (2)])

Since Hs is ample, by negativity lemma the MMP above will not contract Hs. Note that (Y
m
s , ϵHm

s )
is still terminal (by [KM98, Corollary 3.43]). Thus, Y m

s also admits the terminal singularity (see
[KM98, Corollary 2.35]). Since (Y m, Y m

0 ) is DLT, it’s also PLT thanks to the irreducible of Y m
0

([KM98, Proposition 5.51]). And therefore Y m
0 is KLT by the easy direction of inversion of adjunc-

tion (see Theorem 5.3).
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General type Locus, Moishezon Locus and Projective Locus Summer 2025

Note 3 — 2025-07-12 (draft version)

Yi Li

1 Overview

The aim of this note is to study the distribution of general type locus, Moishezon locus, and
projective locus (see Definition 2.1) on the irreducible base. The motivation of this topic comes
from the following observation on the distribution of polarized (projective) K3 surfaces in the
universal family of marked complex K3 surfaces.

Let X → D20 be a universal family of K3 surfaces. A smooth, compact surface is Moishezon iff it
is projective. The projective fibers of X → D20 correspond to a countable union of hypersurfaces
H2g ⊂ D20. As we can see from this example, the projective locus (which corresponds to projective
K3 surfaces) is a countable union of the hypersurface in the moduli space D20.

It is natural to ask how the locus of fibers that admits certain properties is distributed on the
base. This note focuses on the distribution of the fibers that are projective, of general type and
Moishezon on the base S. The major references of this note are [Kol22a], and [Kol22b].

Contents

1 Overview 1

2 The alternating property of the very big locus, general type locus 1

3 The alternating property of the Moishezon locus 4

4 The alternating property of the projective locus 9

2 The alternating property of the very big locus, general type
locus

We first give the definitions for the very big locus, Moishezon locus, general type locus, and the
projective locus.

Definition 2.1 (Very big locus, general type locus, Moishezon locus, [Kol22a, Definition 18]).
Let g : X → S be a proper morphism of normal analytic spaces and L a line bundle on X. Set

1. VBS(L) := {s ∈ S : Ls is very big on Xs} ⊂ S,

1
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2. GTS(X) := {s ∈ S : Xs is of general type } ⊂ S,

3. MOS(X) := {s ∈ S : Xs is Moishezon } ⊂ S,

4. PRS(X) := {s ∈ S : Xs is projective } ⊂ S.

Here very big means the place s ∈ S that Xs 99K ProjS(g∗Ls) is bimeromorphic onto its closure of
the image.

Definition 2.2 (Locus V that satisfies the alternating property over S). Let g : X → S be a
proper morphism of normal analytic spaces, we say the locus

V := {s ∈ S | Xs admits property P},

satisfies the alternating property over S if V ⊂ S is

(1) either nowhere dense (in the analytic Zariski topology),
(2) or it contains a dense open subset of S.

Remark 2.3. In general: (a) A subset which is not nowhere dense does not need to contain an
open subset of S. e.g. Q ⊂ R is not nowhere dense but it clearly contains no dense open subset of
R. (b) A subset that is not nowhere dense does not need to contain a dense subset of S as well,
e.g. the disc D = {|z| < 1} ⊂ C is not nowhere dense, but it is also not dense in C.

In the analytic Zariski topology. If S is irreducible, and V ⊂ S is not nowhere dense, then V is
dense in S. To see this, by definition, V̄ contains a non-empty Zariski open subset of S. Since S is
irreducible, all the non-empty Zariski open subset is dense and therefore V̄ = S.

Note that the property that V ⊂ S satisfies the alternating property over S does not care about
the information on the special fibers. In other words, we have the following lemma.

Lemma 2.4. Assume that S is irreducible, if V satisfies the alternating property on some non-
empty Zariski open subset S′ ⊂ S, then V also satisfies the alternating property on S.

Proof. Since S is irreducible, the non-empty Zariski open subset S′ ⊂ S is Zariski dense in S. Then
we have two cases:

Case 1. If V is nowhere dense in S′, then V is also nowhere dense in S. By contradiction, if there
exists some non-empty Zariski open subset W (of S) contained in V . Since S is irreducible, the
intersection W ∩ S′ is a non-empty Zariski open subset of S′. And therefore it contradicts to the
nonwhere dense of V in S′.

Case 2. If V is dense in S′ and we know that S′ ⊂ S is Zariski dense, then V is also dense in S.

Note that local system on irreducible complex variety is trivial.

Lemma 2.5. Local systems on an irreducible algebraic variety with the Zariski topology are trivial.
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Proof. Since X is irreducible iff any non-empty intersection of the Zariski open subsets is non-
empty. And by definition, for any point x ∈ X, there exists an open subset that the local system
is constant

L |Ui = Si,

. And any such Ui ∩ Uj ̸= ∅ so that

L|Ui∩Uj = Si|Ui∩Uj = Sj |Ui∩Uj ,

so that L is constant on Ui ∪ Uj . By quasi-compactness, we know that the local system is auto-
matically constant.

We first show that the very big locus satisfies the alternating property.

Proposition 2.6. Let f : X 99K Y/S be a proper morphism, between complex analytic varieties.
Assume that the restriction on each fiber fs : XS 99K Ys are bimeromorphic, can we prove that
f : X → Y/S is bimeromorphic S-map?

Theorem 2.7 (Alternating property of very big locus, [Kol22a, Lemma 19]).
Let g : X → S be a proper morphism of normal irreducible analytic spaces and L a line bundle on
X. Then VBS(L) ⊂ S is

(1) either nowhere dense (in the analytic Zariski topology),
(2) or it contains a dense open subset of S, and g : X → S is Moishezon.

Proof. We may assume that g : X → S is surjective (otherwise by properness of g, it will imme-
diately in (1)). By Lemma 2.4, it is possible to pass to a non-empty Zariski open subset of S.
Thus, we may assume that g is flat, g∗L is locally free and commutes with restriction to the fibers.
We get a meromorphic map ϕ : X 99K PS (g∗L). There is thus a smooth, bimeromorphic model
π : X ′ → X such that ϕ ◦ π : X ′ → PS (g∗L) is a morphism. After replacing X by X ′ and again
passing to an open subset of S, we may assume that g is flat, g∗L is locally free, commutes with
restriction to fibers, and ϕ : X → PS (g∗L) is a morphism.

Let Y ⊂ PS (g∗L) denote its image and W ⊂ X the Zariski closed set of points where π : X → Y is
not smooth. Set Y ◦ := Y \ϕ(W ) and X◦ := X\ϕ−1(ϕ(W )). The restriction ϕ◦ : X◦ → Y ◦ is then
smooth and proper. We divide the discussion into two cases:

Case 1. If we assume that the set of points

E = {y ∈ Y | ϕ−1(y) is single points} ⊂ Y,

is not dense in Y . We claim in this case the VBS(L) is nowhere dense in S. For otherwise, it
will imply that VSS(L) is dense in S. And, so that for dense set of fibers {Xs}s∈VBS(L) ⊂ X,
the restriction of the relative Kodaira map are bimeromorphic onto its image. In particular, the
Es = E ∩Xs ⊂ Xs is dense in Xs. We claim that this will imply that

E =
⋃
s∈S

Es,

is dense in Y which will give the contradiction. This is because⋃
s∈VBS(L)

Ys =
⋃

s∈VBS(L)

clXs(Es) ⊂
⋃

s∈VBS(L)

clX(Es) ⊂ clX(
⋃

s∈VBS(L)

Es)
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Case 2. E is dense set in Y , thus it’s also for a dense set in Y ◦. Since ϕo is proper and smooth, ϕo

is a finite étale morphism of degree 1, thus it is an isomorphism.

Thus, ϕ is bimeromorphic on every irreducible fiber that has a non-empty intersection with X◦.
That is, if we denote D := {s ∈ S | Xs ∩Xo ̸= ∅}

⋂
{s ∈ S | Xs is irreducible} with g(Xo) = {s ∈

S | Xs ∩Xo ̸= ∅}, then
D ⊂ VBS(L),

(1) Note that irreducible of the fiber Xs is needed, if Xs ∩ Xo ̸= ∅ and Xs is irreducible, then
Xo ∩ Xs ⊂ Xs is an non-empty Zariski open subset of Xs, which is dense on the fiber Xs. Note
again since both X and S are irreducible, the generic fibers of g are irreducible, see [GW20, Exercise
6.15]. Thus adding this constraint will not change the result),
(2) Note that the very big locus is not directly defined by the restriction of X → PS(g∗L) on the
fibers. Instead, it’s defined by the Kodaira map Xs → P(H0(Xs, Ls). Since we assume that g∗L
commutes with restriction on the fiber, these two Kodaira maps coincide.

Recall that a morphism between analytic varieties will send a dense subset to a dense subset in
its image. And g is flat (by assumption at the beginning), so that g is open. Thus g will send a
Zariski dense open subset to a Zariski dense open subset. Thus D is a non-empty dense Zariski
open subset contained in the VBS(L).

Finally, we need to show that in this case g : X → S is a Moishezon morphism, i.e. the relative
Kodaira map over S induced by L is bimeromorphic onto its image. Since ϕo : Xo → Y o is an
isomorphism for Xo ⊂ X an non-empty dense open subset, the result follows.

As a direct consequence (combined with birational boundedness result of Hacon-Mckernan [HM06])
we see the general type locus also admits the alternating property.

Theorem 2.8 (The alternating property of the general type locus, [Kol22a, Corollary 20]).
Let g : X → S be a proper morphism of normal, irreducible analytic spaces. Then the general type
locus

GTS(X) = {s ∈ S | Xs is of general type},

(1) either nowhere dense (in the analytic Zariski topology),
(2) or it contains a dense open subset of S, and g : X → S is Moishezon

Proof. Using resolution of singularities, we may assume that X is smooth. By passing to an open
subset of S, we may also assume that S and g are smooth. By [HM06] there is an m (depending
only on dimXs) such that |mKXs | is very big whenever Xs is of general type. Thus, Theorem 2.7
applies to L = mKX .

3 The alternating property of the Moishezon locus

In this section, we will prove that the Moishezon locus also admits certain alternating property.
Before proving Theorem 3.6. Let us first introduce the following result, by [RT22].

Definition 3.1. Let X be a complex manifold, ∆ ⊆ C the unit disk and f : X → ∆ a flat family,
smooth over the punctured disk ∆∗. We say that f is a one-parameter degeneration.
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Theorem 3.2 (Moishezon morphism criterion, [RT22, Proposition 3.15]). Let π : X → ∆ be a
smooth morphism.
(1) Assume that there exists an uncountable subset B of ∆ such that for each t ∈ B, the fiber Xt

admits a line bundle Lt with the property that c1 (Lt) comes from the restriction to Xt of some
cohomology class in H2(X ,Z).
(2) Assume further that the Hodge number h0,2 (Xt) := h2 (Xt,OXt) is independent of t ∈ ∆ (the
original theorem requires only Hodge (0,1) deformation invariance).

Then there exists a global line bundle L over X such that c1(L|Xs) = c1(Ls) for any s in some
uncountable subset of B.

Proof. Apply the sheaf exponential exact sequence so that

0 → Z → OX → O∗
X → 0.

We claim that
H2(X ,OX ) ∼= H0(∆, R2π∗OX), H

2(Xs,OXs)
∼= R2π∗OX (s).

Indeed:

(1) By Cartan B. we have
Hp(S,Rqπ∗OX) = 0, p > 0, q ≥ 0,

and the Leray spectral sequence argument implies the first one,
(2) Since we assume the cohomological dimension h0,2 is constant, by Grauert base change theorem,
the second one follows.

Thus, we have the following commutative diagram.

H0(X , R2π∗OX )

H1(X ,O∗
X ) H2(X ,Z) H2(X ,OX )

H1(Xs,O∗
Xs

) H2(Xs,Z) H2(Xs,OXs)

R2π∗OX (s)

∼=

e2

e2

∼=

Where we have the evaluation evs : H
0(X , R2π∗OX ) → R2π∗OX (s) in the diagram above.

Let Ls ∈ Pic(Xs) such that c1(Ls) ∈ H2(Xs,Z). By simply connectedness of ∆, c1(Ls) ∈ H2(Xs,Z)
will lift to c ∈ H2(X ,Z). If we can prove the vanishing of e2(c) ∈ H2(X ,OX ) then by the exactness
of the sequence we can find some global line bundle L ∈ Pic(X ).

Observe that the cohomology group H2(Xs,Z) ∼= H2(X ,Z) is Z coefficient, so that it has only
countable many elements. Given uncountable many Lt, it must have some c ∈ H2(X ,Z) such that
uncountable subset of t satisfies c1(Lt) = c.

5
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Since this c ∈ H2(Xs,Z) comes from Ls ∈ Pic(Xs), we have e2(c) = 0 ∈ R2π∗OX (s) and thus if we
lift it to c ∈ H2(X ,Z) the global section e2(c) ∈ H0(X , R2π∗OX ) will vanish on uncountable many
points. Thus by the identity principle (since R2π∗OX is locally free (this step is not due to torsion
freenss, we need Hodge number condition to get torsion freeness) the vanishing locus of e2(c) is
a subvariety), we have e2(c) = 0 ∈ H2(X , R2π∗OX ). Therefore, there exists a global line bundle
L ∈ Pic(X ) with the restriction c1(L|Xs) = c1(Ls). Finally, by the Proposition 3.3 deformation
density of Iitaka-Kodaira dimension, we conclude that L is indeed a global big line bundle.

The following proposition is used in the proof of Theorem 3.1.

Proposition 3.3 (Deformation density of Iitaka-Kodaira dimension, [LS77, Theorem 3.4]). Let
π : X → Y be a flat family from a complex manifold over a one-dimensional connected complex
manifold Y with possibly reducible fibers. If there exists a holomorphic line bundle L on X such
that the Kodaira-Iitaka dimension κ (Lt) = κ for each t in an uncountable set B of Y , then any
fiber Xt in π has at least one irreducible component Ct with κ

(
L|Ct

)
≥ κ.

In particular, if any fiber Xt for t ∈ Y is irreducible, then κ (Lt) ≥ κ.

We next add some supplementary materials about the sheaf exponential sequence and relative
Picard functor.

Lemma 3.4 ([Har77, p. 466]). Let X be a reduced complex analytic space, then the following
sheaf exponential sequence is exact.

0 → Z → OX → O∗
X → 0.

The following proposition relative the relative Picard functor

Proposition 3.5 (Picard-Brauer exact sequence). Let X → T be a proper surjective morphism
between complex varieties.

0 → H1
(
T, fT∗O∗

XT

)
→ H1

(
XT ,O∗

XT

)
→ H0

(
T,R1fT∗O∗

XT

)
→H2

(
T, fT∗O∗

XT

)
→ H2

(
XT ,O∗

XT

)
,

we callH2(T, fT ∗O∗
XT

) = H2(T,O∗
T ) the Brauer group. Note that a global sectionH

0(T,R1(fT )∗O∗
XT

)

that comes from H0(XT , R
2(fT )∗Z) will automatically vanishing in the Brauer group since we have

the factorization H2(T,O∗
XT

) as

H0(T,R1(fT )∗O∗
XT

) → H0(T,R2(fT )∗ZXT
) → H0(T,R2(f∗)).

If OS
∼−→ f∗OX holds universally, then H1 (T,O∗

T )
∼−→ H1

(
T, fT∗O∗

XT

)
. Hence we have the following

Picard-Brauer exact sequence,

0 → Pic(T ) → Pic (XT ) → Pic(X/S)(zar)(T ).

We now turn to the proof of the alternating property of the Moishezon locus.
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Theorem 3.6 ([Kol22a, Theorem 21]). Let g : X → S be a smooth, proper morphism of normal,
irreducible analytic spaces. Then MOS(X) ⊂ S is

(1) either contained in a countable union ∪iZi, where Zi ⊊ S are Zariski closed,
(2) or MOS(X) contains a dense, open subset of S.

Furthermore, if R2g∗OX is torsion free then (2) can be replaced by
(3) MOS(X) = S and g is locally Moishezon.

Remark 3.7. The condition (1) is slightly different from the nowhere dense condition compared
with Lemma 2.7 and Theorem 2.8. Indeed the countable union of nowhere dense subset needs not
to be nowhere dense (e.g. Q as countable union of nowhere dense subset is no longer nowhere
dense). As we will see in the proof, this replacement is necessary. Another difference compared
with Lemma 2.7 and Proposition 2.8 is here we assume the morphism is smooth.

Remark 3.8. Compared with the proof of [RT22], Kollár’s proof does not require the base to be
the unit disc ∆. Consequently, the direct image R2g∗OX is only torsion free, which does not need
to be locally free.

Proof. Assume first that R2g∗OX is torsion free. The sheaf exponential sequence

0 → ZX → OX
exp−−−→ O∗

X → 1.

gives
R1g∗O∗

X → R2g∗ZX
e2−→ R2g∗OX .

We may pass to the universal cover of S. Note that the local system on the simply connected space
is constant, thus R2g∗ZX ⊗OS is a trivial bundle.

Let {ℓi} be those global sections of R2g∗ZX such that e2 (ℓi) ∈ H0(S, R2g∗OX

)
is identically 0,

and
{
ℓ′j

}
the other global sections (those {ℓi, ℓ′i} are countable since we consider the Z-coefficient

local system). The ℓi then lift back to the global sections of R1g∗O∗
X . Hence to line bundles Li on

X. We then divide the problem into two cases:

Case 1. If there is an Li such that VBS (Li) contains a dense open subset of S, then X → S is
Moishezon (by Proposition 2.7) and we are done.

Case 2. If any such line bundle Li has nowhere dense very big locus VBS(Li). We claim

MOS(X) ⊂ ∪iVBS (Li)
⋃

∪j
(
e2

(
ℓ′j
)
= 0

)
.

If s ∈ MOS(X), and s /∈ ∪j
(
e2

(
ℓ′j

)
= 0

)
. We claim in this case every line bundle on Xs is

numerically equivalent to some Li|Xs
. For otherwise, there exist a line bundle Ls on Xs, with c1(Ls)

lift to some ℓ′j . Since the diagram below commute, which means that evs(e2(ℓ
′
j)) = e2(c1(Ls)) = 0

must vanish, contradict to the s /∈
(
e2

(
ℓ′j

)
= 0

)
.

H0(S,R2g∗Z) = H2(S,Z) H0(X,R2g∗OX)

H2(Xs,Z) R2g∗OX(s) ≃ H0(Xs,OXs)

e2

≃ evs

e2

7
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(Note that the isomorphism H2(Xs,Os) ≃ R2g∗OX(s) at the point s ∈ MOS(X) since locally free
of R2g∗OX in neighborhood of s ∈ S using Proposition 3.9 and the Hodge decomposition we proved
in the first time).

Thus Xs has a big line bundle (as s ∈ MOS(X)) ⇔ Li|Xs
is big for some i⇔ Li|Xs

is very big for
some i (and therefore s ∈ ∪iVBS(Li)). This completes the case when R2g∗OX is torsion free.

We next show that fiberwise Moishezon morphism is locally Moishezon if the morphism is smooth.
Before proving the result, let us give a locally free criterion of direct image when the fibers satisfy
the Du Bois property.

Theorem 3.9 (Locally freeness criterion for Rif∗OX , [Kol22a, Theorem 24]). Let f : X → S be a
smooth, proper morphism of analytic spaces. Assume that H i (Xs,C) → H i (Xs,OXs) is surjective
for every i for some s ∈ S. Then Rig∗OX is locally free in a neighborhood of s for every i.

Proof. We begin our proof by noticing by the direct image theorem it’s enough to show the surjec-
tivity of the base change morphism

ϕis : R
if∗OX(s) → H i (Xs,OXs) ,

for every i. Indeed the base change theorem shows that the surjectivity of the base change mor-
phisms ϕis and ϕi−1

s implies the locally freeness of the direct image Rif∗(OX) (see Hartshorne
Corollary 12.9).

Next by the Theorem on Formal Functions, it is enough to prove this when S is replaced by any
Artinian local scheme Sn, whose closed point is s.

By Cartan B easy to see the vanishing of Hp(Sn, R
if∗OX) = 0, ∀q,∀i > 0 then by the Leray

spectral sequence argument we get

H0
(
Sn, R

if∗OX

)
= H i (Xn,OXn) , for i ≥ 0.

On the local Artinian base with the closed point s, we have the following equality

Rif∗OX(s) = H0(Sn, R
if∗OX) = H i(Xn,OXn).

The base change morphism thus becomes

ψi : H i (Xn,OXn) → H i (Xs,OXs) .

Let CXn (resp. CXs) denote the sheaf of locally constant functions on Xn (resp. Xs) and jn :
CXn → OXn (resp. js : CXs → OXs) the natural inclusions. We have a commutative diagram

H i(Xn,CXn) H i(Xs,CXs)

H i(Xn,OXn) H i(Xs,OXs)

αj

j′n j′s

ψj

Note that αi is an isomorphism since the inclusion Xs ↪→ Xn is a homeomorphism, and jis is
surjective by assumption. Thus ψi is also surjective.
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Using this we can prove that the smooth fiberwise Moishezon morphism is locally Moishezon mor-
phism.

Theorem 3.10 (Fiberwise Moishezon smooth morphism is locally Moishezon , [Kol22a, Corollary
22]). Let g : X → S be a smooth, proper morphism of normal and irreducible analytic spaces
whose fibers are Moishezon. Then g is locally Moishezon.

Proof. Since we proved (in the first time) the Moishezon manifolds admit strong Hodge decompo-
sition, thus

H i (Xs,C) → H i (Xs,OXs) ,

is surjective for every i ≥ 0. The result then follows directly by Theorem 3.9.

4 The alternating property of the projective locus

In the last section, we will finish the proof of the alternating property about the projective locus.
The following Thom Whitney stratification theorem is useful in the proof.

Proposition 4.1 (Thom Whitney stratification theorem, [Kol22b, Lemma 15]). Let f : X → S
be a proper morphism of complex analytic spaces. There exist finite Whitney stratifications X of
X and S = {Sl}l≤d of S by locally closed subsets Sl of dimension l, with d = dimS, such that for
each connected component S (a stratum) of Sl. The following condition holds.

(a) f−1S is a topological fibre bundle over S, union of connected components of strata of X , each
mapped submersively to S,

(b) For all v ∈ S, there exist an open neighborhood U(v) in S and a stratum preserving homeo-
morphism h : f−1(U) ≃ f−1(v)× U s.t. f|U = pU ◦ h where pU is the projection on U .

In particular, there is a dense, Zariski open subset S◦ ⊂ S such that g◦ : X◦ → S◦ is a topologically
locally trivial fiber bundle. Moreover, If S = ∆, if we shrink the disc then f : X∗ → ∆∗ is
topologically fiber bundle.

Under this assumption, we can prove the local system Rig∗ZX is constructible in the analytic
Zariski topology for a proper morphism between complex analytic spaces.

Corollary 4.2 ([Kol22b, Corollary 16]). Let g : X → S be a proper morphism of complex analytic
spaces. Then the sheaves Rig∗ZX are constructible in the analytic Zariski topology.

When consider the global section of a local system, the following result is helpful.

Lemma 4.3. Let L be a local system on a complex manifold S, the global section

H0(S,L ) = Lρ := {a ∈ L| ρ(α)(a) = a,∀α ∈ π1(S, v)} ,

where L is the fiber of the local system on the reference point v ∈ S. And ρ : π1(S, v) → GL(L) be
the monodromy action. In particular if the base S is simply connected, then H0(S,L ) = L.

9
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Proposition 4.4 (The alternating property of projective locus, [Kol22b, Proposition 17]). Let
g : X → S be a proper morphism of normal, irreducible analytic spaces. Then there is a dense,
Zariski open subset S◦ ⊂ S such that
(1) either X is locally projective over S◦,
(2) or PRS(X) ∩ S◦ is locally contained in a countable union of Zariski closed, nowhere dense
subsets.

If g is bimeromorphic to projective morphism, then X is projective over So.

Remark 4.5. The locally projective condition is necessary in some situations (that is g : X → S
may not be projective over So). Question to be done: where do we use the ”locally” in the proof?
Euclidean topology or Zariski topology?

Proof. If we restrict our attention to the main strata So of the Whitney stratification, the direct
image R2g∗ZX is locally constant. And further restricting on some Zariski open subset, we can also
assume that R2g∗OX is locally free. By passing to the universal cover, we may also assume that
R2g∗ZX is a constant sheaf. Now consider the sheaf exponential sequence

R1g∗O∗
X → R2g∗ZX

∂→ R2g∗OX .

Let Θ be a global section ofR2g∗ZX . By Lemma 4.3, we know that Θ ∈ H2(X,Z) = H0(S,R2g∗ZX).
We decompose the cohomology into two disjoint parts,

H2(X,Z) = V1 ⊔ V2,

where
V1 = {Θ ∈ H2(X,Z) | ∂Θ ≡ 0}, V2 = {Θ ∈ H2(X,Z) | ∂Θ ̸≡ 0}.

Since we assume that R2g∗OX is a vector bundle, the vanishing locus is a Zariski closed nowhere
dense subset we denote HΘ = V (Θ) for Θ ∈ V2.

Case 1. Given a point s ∈ PRS(X), there exists some ample line bundle Ls on Xs, and thus under
the exact sequence

Pic(Xs) → H2(Xs,Z)
∂→ H2(Xs,OXs),

c1(Ls) = ΘLs maps to some zero element ∂(ΘLs) = 0. Since

ress : H
2(X,Z)

≃→ H2(Xs,Z),

one can lift the class ΘLs ∈ H2(Xs,Z) to a class Θ ∈ H2(X,Z).

If ∂Θ is identically zero, then it lifts to a line bundle L ∈ Pic(X), such that L|Xs = Ls, which is
ample and therefore by Grothendieck’s ampleness theorem. We know that the morphism is locally
projective around s ∈ PRS(X).

Case 2. Assume that for all points s ∈ PRS(X), all ∂Θ is not identically zero, then ∂Θ = 0 defines
a Zariski closed, nowhere dense subset HΘ ⊂ S. In this case, we know that

Θ ∈ V2,

and by the commutative diagram,

10
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we know that s ∈ V (Θ). And thus

PRS(X) ⊂ ∪Θ∈V2V (Θ).
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Projectivity Criterira and Projective Stratification Summer 2025

Note 4 — 2025-07-16 (draft version)

Yi Li

1 Overview

The aim of this note is twofold.

(1) We summarize several projectivity criteria for Moishezon varieties. These include the singu-
lar version of Kodaira’s projectivity criterion, the Nakai–Moishezon criterion, Seshadri’s criterion,
Kleiman’s ampleness criterion, and a projectivity criterion for Moishezon morphisms as developed
in [CH24].

(2) We discuss the projective stratification theorem. The ultimate goal is to complete the proof of
the following result.

Theorem 1.1 ([Kol22, Theorem 2]). Let g : X → S be a proper Moishezon morphism of complex
analytic spaces and S∗ ⊂ S a dense, Zariski open subset such that g is flat over S∗. Assume that
X0 is projective for some 0 ∈ S, and the fibers Xs have rational singularities for s ∈ S∗.

Then there is a Zariski open neighborhood 0 ∈ U ⊂ S and a locally closed, Zariski stratification
U ∩ S∗ = ∪iSi such that each g|Xi

: Xi := g−1 (Si) → Si is projective.
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2 Projectivity critera

In this section, we summarize some projectivity criteria related to Moishezon varieties.

2.1 Kodaira’s projectivity criterion

Proposition 2.1. LetX be a compact Kähler variety with rational singularities such thatH2 (X,OX) =
0, then X is projective.

Proof. Take the resolution ν : X ′ → X, where X ′ is a Kähler manifold. Since X has rational
singularity, Riν∗OX′ = 0 for i > 0. Thus, by the Leray spectral sequence argument, H2(X,OX) =
H2(X ′,OX′) = 0 and therefore by Kodaira’s projectivity criterion for smooth manifolds, X ′ is
projective. And therefore X is a Kähler Moishezon variety with rational singularity. By the result
we proved in the first time, X is a projective variety.

2.2 Nakai-Moishezon ampleness critera

Proposition 2.2 ([Kol90, Theorem 3.11]). Let X be a proper Moishezon space over C and let H
be a line bundle on X. Then H is ample on X if an only if for every irreducible closed subspace
Z ⊂ X, the intersection product Hdim(Z) · Z is positive.

2.3 Seshadri criterion line bundle version

Seshadri constant was first introduced by Demailly in the early 90s, when he studied Fujita’s
conjecture.

Conjecture 2.3. Let X be a smooth projective variety of dimension n, with L being ample. Then

(a) KX + (n+ 1)L is global generated,

(b) KX + (n+ 2)L is very ample.

Definition 2.4. Given a proper analytic space X and a line bundle L, the Seshari constant is
defined to be

ϵ(L, x) := inf
C∋x

L · C
multxC

.

He tried to reduce Fujita’s conjecture to the bound control of the Seshadri constant.

Theorem 2.5 ([Dem92]). Let X be a smooth projective variety of dimension n with L being
ample. Then the following hold.
(a) If ϵ(L, x) > n

n+1 then KX + (n+ 1)L is global generated,

(b) If ϵ(L, x) > 2n
n+2 then KX + (n+ 2)L is very ample.

For the readers who want to know more about this, please refer to [Dem92].
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2.4 Seshadri criterion cohomology class version 3

Proposition 2.6 ([Kol22]). Let X be a proper Moishezon space, and D a divisor on X (the same
also true for Q, R dvisor). Then D is ample if and only if there exists a positive number ε > 0
such that

(D · C)

mult xC
≥ ε,

for every point x ∈ X and every irreducible curve C ⊆ X passing through x.

2.4 Seshadri criterion cohomology class version

Lemma 2.7. Let X be a normal compact Moishezon variety. Then the canonical map

Φ : N1(X) → N1(X)∨, [D] 7→ λD

is an isomorphism. Here we define

λD : N1(X) → R, [T ] 7→ T ·D.

Remark 2.8. For Fujiki varieties with rational singularity the result is also true:

Let X be a normal compact Fujiki variety with rational singularity. Then the canonical map

Φ : N1(X) → N1(X)∨, ω 7→ λω

is an isomorphism. Here we define

λω : N1(X) → R, [T ] 7→ T (ω).

Here
N1(X) := H1,1

BC(X),

and N1(X) to be the vector space of real closed currents of bidimension (1, 1) modulo the following
equivalence relation: T1 ≡ T2 if and only if

T1(η) = T2(η),

for all real closed (1, 1)-forms η with local potentials.

Proposition 2.9 ([Kol22]). Let X be a proper Moishezon space over C with rational singularities.
Then X is projective iff there is a cohomology class Θ ∈ H2(X,Q) and an ϵ > 0 such that

Θ ∩ [C] ≥ ϵ ·multpC

for every integral curve C ⊂ X and every p ∈ C.

Proof. Note that the cup product induce a Q-bilinear form

(−) ∩ (−) : H2(X,Q)×H2(X,Q) → Q,

which will induce a Q-linear functional on H2(X,Q). If C 7→ [C] gives an injection N1(X,Q) ↪→
H2(X,Q), then we can view C 7→ Θ ∩ [C] as a Q-linear map

Θ ∩ (−) : N1(X,Q) → Q.

3



2.5 Klieman’s ampleness criterion for Moishezon spaces 4

By the previous lemma, Θ ∩ (−) lies in the dual space N1(X,Q). And line bundles span the dual
space of N1(X,Q). So there is a line bundle L on X and an m > 0 such that deg (L|C) = m ·Θ∩ [C]
for every integral curve C ⊂ X. Thus

deg (L|C) = m ·Θ ∩ [C] ≥ mϵ ·multpC,

for every integral curve C ⊂ X and every p ∈ C. Then L is ample by the line bundle version
Seshadri criterion. Therefore X is projective.

Note C 7→ [C] gives an injection N1(X,Q) ↪→ H2(X(C),Q) if X has 1-rational singularities has
been discussed in the first note.

2.5 Klieman’s ampleness criterion for Moishezon spaces

Proposition 2.10 ([VP21]). Suppose that Y is a Moishezon space with Q-factorial, log terminal
singularities and that L is a Cartier divisor on Y . Then L is ample if and only if L has positive
degree on every irreducible curve on Y and L induces a strictly positive function on NE(Y ).

Remark 2.11. It remains open if the result is still true without the Q-factorial KLT assumption.

Proof. The proof require the study of rational curves on Moishezon spaces, we will prove it in the
next note.

3 Approximation of the Chow-Barlet 1-cycle space

In this section, we will introduce the main technical tool: Chow-Barlet cycle space. We will proved
that one can approximate the Chow-Barlet 1-cycle space using countable many families of marked
curves, which is crucial for the proof of result Theorem 6.1.

Definition 3.1 (Chow functor with m-marked points, [Kol96, Definition I.3.20]). Let X be an
analytic space over S. Let

Chowm(X/S)(Z) =


Well defined families of nonnegative,
proper, algebraic cycles C of X ×S Z/Z,
s1, . . . , sm : Z → X, si(z) ∈ Cz for all z ∈ Z

 .

We call the data in the bracket the Chow data with m-marked points. We say C is a pointed curve
if it is a 1-cycle that has one marked point. And we denote the Barlet-Chow 1-cycle space with
1-marked point Chow1

1(X/S).

Lemma 3.2 (Representative of the Chow functor with marked points). Let X → S be a proper
morphism between complex analytic spaces. The relative Chow functor with m-marked points is
representable by a complex analytic space Chowm(X/S).

Proof. Since the proof does not appear in the standard references, for the completeness we add a
proof here. We claim that Chow functor with marked points is actually represented by a closed
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subspace of the original Chow-Barlet cycle space (we call this closed subspace incident complex
subspace). Let

U → Chow(X/S),

be the universal family of the Barlet-Chow cycle space (with U ⊂ X ×S Chow(X/S) as closed
complex subspace). We then define the m-fold fiber product to be X(m) = X ×S X ×S ...×S X︸ ︷︷ ︸

m-times

.

Let P = Chow(X/S)×S X(m), the incident complex subspace is defined to be

Chowm(X/S) = I = {(s, x1, ..., xm) ∈ P | xi ∈ Us, for all i}.

We claim that I ⊂ P is a closed complex subspace. Indeed, we have the natural projective

pi : P → Chow(X/S)×S X, (c, x1, ..., xm) 7→ (c, xi),

and easy to check that the incidence variety can be represented as

I =

m⋂
i=1

p−1
i (U),

since U is closed complex subspace in X ×S Chow(X/S), and therefore as a finite intersection I is
a closed complex subspace in P .

We then show that I is the representative of the Chow functor with marked points that is

HomS(T, I) ≃ Chowm(X/S)(T ).

To see this, we first show that given a S-morphism T → I/S it will induce a Chow data with
marked points over S. Indeed, since I ⊂ Chow(X/S)×S X(m), so that the first projection

π1 : T → I → Chow(X/S),

will induce a family over T via pull back. And the second projection

σi = π2,i : T → I
qi→ X,

will defines the section we want. Conversely, given the Chow data (Z, σ1, ..., σm) with marked
point, it will induce a morphism. To see this, by the representative of the standard Chow functor,
we know that there exists a morphism ϕZ : T → Chow(X/S) such that Z → T is the pull back
family, with m-sections σi : T → X(m). It is easy to check that the induced morphism actually
maps into I,

ϕZ × σi : T → I ⊂ P.

The following upper semi-continuity result is needed in the proof.

Lemma 3.3 (upper semi-continuity of the multiplicities, [BM19, Proposition 4.3.10]). Let (Xs)s∈S
be an analytic family of n-cycles of a complex space M . Then the function

S ×M −→ N, (s, z) 7→ multz (Xs)

is upper semicontinuous in the Zariski topology of S ×M .

5
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Proof. The proof of the lemma is a bit complicated and we omit it here.

Remark 3.4. In particular, let f : X → S be a proper flat morphism of relative dimension 1,
assume that there is a holomorphic section σ : S → X. Then the multiplicity

mult : S → Z, s 7→ multσ(s)Xs

is Zariski upper-semicontinuous.

Proof. Since the fibers {Xs} clearly forms an anlytic family of cycles in X. Since the section map
σ : S → X is holomorphic,

S → S ×X → N, s 7→ (s, σ(s)) 7→ multσ(s)Xs,

is upper semi-continuous.

Theorem 3.5 (Approximation Chow-Barlet 1-cycle space, [Kol22]). Let g : X → S be a proper
morphism of complex analytic spaces that is bimeromorphic to a projective morphism. Fix m ∈ N.
Then there are countably many diagrams of complex analytic spaces over S,

Ci Wi ×S X

Wi

wi σi

indexed by i ∈ I, such that

(1) the wi : Ci → Wi are proper, of pure relative dimension 1 and flat over a dense, Zariski open
subset W ◦

i ⊂ Wi,

(2) the fiber of wi over any p ∈ W ◦
i has multiplicity m at σi(p),

(3) the Wi are irreducible, the structure maps πi : Wi → S are projective, and

(4) the fibers over all the W ◦
i give all irreducible curves that have multiplicity m at the marked

point.

Proof. By assumption, there is a bimeromorphic morphism r : Y → X such that Y is projective
over S.

Y X

S

r

f g

By Lemma, the Barlet-Chow cycle space of curves with marked points on Y/S exists (denote it
Chow1

1(Y/S)) and its irreducible components Wi are projective over S. The universal family

C → Chow1
1(Y/S),

parameterize all pointed curves on Y in the fiber direction. Let W be any irreducible component
of Chow1

1(Y/S), We restrict the universal family on that component CY → W .

We then map back the family of curves on Y :

6
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CY W ×S Y

W

wY σY

to family of curves on X:

C W ×S X

W

w σ

(Note that the family w : C → W is no longer flat, as curves on the fibers can be contracted by
Y → X).

However, it’s still proper flat over some dense Zariski open subset W o ⊂ W . Since the family is flat
over W o, by Lemma 3.4, the multiplicity of a fiber Cw at the section s is an upper semi-continuous
function on W ◦. For each m ∈ N, let Wm ⊂ W be the closure of the set of points p ∈ W ◦ for
which multσ(p)Cp = m. Since the restriction of a projective morphism over closed subvariety is still
projective, Wm → S is a projective morphism.

We finally going back to the original Moishezon morphism g : X → S. Let X◦ ⊂ X be the largest
open set over which r : Y → X is an isomorphism. The above procedure gives all irreducible
pointed curves that have nonempty intersection with X◦. Equivalently, all curves with a marked
point that are not contained in X\X◦. We can now use dimension induction (Note that by the
result we proved in the first time the restriction X \X0 → S is a Moishezon morphism, so that we
can repeat the same argument). And we can get countably many families of pointed curves that
approximate the Chow-Barlet 1-cycle space with 1-marked point.

4 Projectivity of very general fibers

We can now prove the following theorem, which is the key step in deducing the main result.

Theorem 4.1 (Projectivity of very general fibers, [Kol22, Proposition 14]). Let g : X → S be a
proper morphism of complex analytic spaces and S∗ ⊂ S a dense, Zariski open subset such that g
is flat over S∗. Assume that
(1) X0 is projective for some 0 ∈ S,
(2) the fibers Xs have rational singularities for s ∈ S∗, and
(3) g is bimeromorphic to a projective morphism gp : Xp → S.

Then there is a Euclidean open neighborhood 0 ∈ U ⊂ S and countably many nowhere dense,
closed, analytic subsets {Hj ⊂ U : j ∈ J}, such that Xs is projective for every s ∈ U\ ∪j Hj .

Proof. First choose 0 ∈ U ⊂ S such that XU retracts to X0. Since X0 is projective, it carries
an ample line bundle L. Let Θ ∈ H2 (XU ,Q) be the pull-back of c1(L) to XU . Note that Θ is a
topological cohomology class that is usually not the Chern class of a holomorpic line bundle. Let
(Cs, ps) be any marked curve on the fiber Xs for 0 ̸= s ∈ U .

7
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Using Theorem 3.5, we can find countable many families of pointed curves, with projective mor-
phisms πi : Wi → U .

Ci Wi ×S X

Wi

wi σi

Let J ⊂ I be the index such that Hi := πi(Wi) ⊂ U for i ∈ J is nowhere dense in U . Therefore,
πi : Wi → U for i ∈ I \J will dominant U . Since πi is projective, in particular it implies 0 ∈ πi(Wi)
for i ∈ I \ J .

Let s ∈ U \ ∪j∈JHj , then by definition of J , there is an i ∈ I\J , such that the following conditions
hold.

(a) (Cs, ps) is one of the fibers of wi over W
◦
i ,

(b) multσi(p)Cp = m for all p ∈ W ◦
i , and

(c) πi : Wi → U is projective and its image contains 0, s ∈ S (say πi(0) = 0, πi(w) = s)

Since Wi is irreducible, there exist a holomorphic curve τ : ∆ → Wi connecting the point 0, w (with
τ(0) = 0, τ(1) = w and the radius of r(∆) > 1). We then pull the family back to the disc

w : C → ∆,

with section σ : ∆ → C. Note that

multσ(t) Ct = multσ(1) C1 = multσi(s)Cis for all t ∈ ∆∗,

since τ(∆∗) ⊂ W o
i . On the other hand, by the Lemma 3.4, we have

multσ(0) C0 ≥ multσ(t) Ct = multσi(s)(Ci)s, for t ∈ ∆∗.

(Here the pull back family C → ∆ is flat, since the base is a disc and a surjective holomorphic map
from reduced irreducible space to a disc is automatically flat).

Since C0 is a 1-cycle on the projective X0, and Θ0 = Θ|X0 is the Chern class of an ample line bundle
on X0. Thus

Θ ∩ [C0] ≥ ϵ ·multσ(0) C0.

by the easy direction of Theorem 2.9, where ϵ depends only on X0 and Θ0.

Since C0 and C1 lie in the same irreducible component of Chow-Barlet cycle space, they are algebraic
equivalent. Thus the cup product with Θ remain the same. Putting these together gives that

Θs ∩ [Cs] = Θ ∩ [C1] = Θ ∩ [C0] ≥ ϵ ·multp0 C0 ≥ ϵ ·multps Cs

Thus Xs is projective by another direction of Theorem 2.9.
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5 From locally projective to global projective

Lemma 5.1 (Trivialization of the monodromy after finite base change). Let X be a connected
complex analytic variety. Let L be a local system with finite monodromy defined on X. Then
there exisfts a finite covering π : X ′ → X such that the pull back local system π∗L becomes trivial.

Proof. Let
ρ : π1(X,x0) → GLn(L),

be the monodromy representation, with L be the fiber of the local system at the reference point
x0 ∈ X. Since the monodromy of L is finite, so that

ker ρ ⊂ π1(X,x0),

is a finite index normal subgroup. Thus by the Galois correspondence, we can find a finite cover

π : X ′ → X,

such that the fundamental group π∗(π1(X
′, x′0)) = ker ρ ⊂ π1(X,x0) with π(x′0) = x0. On the other

hand, we have the following base change diagram for the monodromy representation.

π1(X
′, x′0) π1(X,x0)

GL(L) GL(L)

π∗

ρ′ ρ

=

so that the monodromy of ρ′ : π1(X
′, x′0) → GL(L) is clearly trivial.

Lemma 5.2. Let g : X → Y/S be a proper contraction morphism defined over S. The induced
pull back map on the Néron-Sever group and N1 space

g∗ : NS(Y/S) → NS(X/S), g∗ : N1(Y/S) → N1(X/S),

are injective.

Proposition 5.3. Assume that g : X → S be a proper Moishezon morphism of normal irreducible
analytic spaces. Assume that there exists a dense Zariski open subset So ⊂ S such that X is locally
projective over So then it’s actually global projective.

Proof. By passing to a Zariski open subset, we may assume that R2g∗OX is locally free, and
R2g∗ZX is locally constant. Thus by Proposition ?? and Lemma 5.2, after finite base change the
Neron-Sever local system becomes trivial local system, i.e. the locally defined ample line bundle

Li ∈ NS(X/S)(Ui) = NS(X/S)(S),

defines a global line bundle.
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6 Kollár’s projective stratification theorem

Now we can prove the main theorem of this note.

Theorem 6.1 (Projective Stratification, [Kol22, Theorem 2]). Let g : X → S be a proper Moishe-
zon morphism of complex analytic spaces and S∗ ⊂ S a dense, Zariski open subset such that g is
flat over S∗. Assume that

(1) X0 is projective for some 0 ∈ S,

(2) the fibers Xs have rational singularities for s ∈ S∗.

Then there is a Zariski open neighborhood 0 ∈ U ⊂ S and a locally closed, Zariski stratification
U ∩ S∗ = ∪iSi such that each

g|Xi
: Xi := g−1 (Si) → Si is projective.

Proof. By Theorem 4.1, we know that PRS(X) contains the complement of a countable union of
Zariski closed, nowhere dense subsets. By the Baire category theorem, PRS(X) is not contained in
a countable union of closed, nowhere dense subsets. And by the alternating property of projective
locus that we proved in the previous note, we are in the case that g : X → So is locally projective
over a dense, Zariski open subset S◦ ⊂ S.

Since the morphism is Moishezon, therefore by [Kol22, Complement 18], the morphism g : X → S is
global projective over So. And we repeat the process on S \So gives the stratification of g : X → S
into projective morphisms g|Xi : Xi = g−1(Si) → Si.

7 Claudon-Höring’s projectivity criterion for Kähler morphisms

In this section, we introduce the following projectivity criterion for Kähler morphism.

Theorem 7.1 ([CH24, Theorem 3.1]). Let f : X → Y be a fibration between normal compact
Kähler spaces. Assume that X has strongly Q-factorial KLT singularities. Assume one of the
following:
(1) The normal space Y has klt singularities and the natural map

f∗ : H0
(
Y,Ω

[2]
Y

)
−→ H0

(
X,Ω

[2]
X

)
is an isomorphism.
(2) The morphism f is Moishezon.

Then f is a projective morphism.

Proof. We will discuss this in the next note.

Final words, Projectivity of moduli has been systematic studied by Kollár in the 1990’s. For readers
who want to know more about this direction, please refer to [Kol90].
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