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Moishezon space and Moizhezon morphism Summer 2025

Note 1 — 2025-07-07 (draft version)

Yi Li

1 Overview

The aim of this note is to give a brief introduction to Moishezon vairety and Moishezon morphism.
The major references for this note are [Kol22], [Fuj83], and [Uen75].

Why study Moishezon morphisms? First, Moishezon spaces have more functorial behavior (com-
pared with projective varieties), as we will see in Section 2. Secondly, from almost any projective
variety we can construct a Moishezon space via bimeromorphic modification, making Moishezon
spaces versatile in birational geometry. Thirdly, by Artin’s fundamental theorem, the category of
Moishezon spaces appears naturally in moduli theory. Another compelling reason to consider the
Moishezon category is that it allows cut-and-paste operations similar to those we can perform in
topology.

This series of talks is organized as follows:

Lec 1. Basic knowledge about Moishezon spaces and Moishezon morphisms,

Lec 2. Fiberwise bimeromorphic problems.

Lec 3. General type locus, Moishezon locus, and projective locus.

Lec 4. Projectivity critera and behavior of projective locus.

Lec 5. Rational curves on Moishezon spaces.
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2 Moishezon spaces

Definition 2.1 (Meromorphic S-map). Let X,Y be reduced complex spaces. We call the S-map
a meromorphic S-map if
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Γ

X Y

S

p q

α

f g

the natural projection associated to the graph p : Γ → X is a proper bimeromorphic morphism.
Moreover, if the natural projection q : Γ → Y is also a proper bimeromorphic morphism, then we
call α a proper bimeromorphic S-map.

Remark 2.2 (Comparison between meromorphic map and S-meromorphic map). By definition,

X ×S Y ↪→ X × Y

is an inclusion. Therefore, it is easy to see that

S-meromorphic map =⇒ meromorphic map.

Conversely, the graph of a meromorphic map Γ ⊂ X × Y needs not to contain in X ×S Y , so that
a meromorphic map needs not to be a S-meromorphic map.

Remark 2.3 (Comaprison between S-meromorphic map and fiberwise meromorphic map). Note
that a S-bimeromorphic map does not need to be a fiberwise bimeromorphic map. Since the
restriction of a bimeromorphic map on the subvariety (the fiber) need not to be a bimeromorphic
map. We will discuss more about the fiberwise bimeromorphic map in the Note-2.

Definition 2.4 (Moishezon space, first definition). A proper, irreducible, reduced analytic space
X is Moishezon if it is bimeromorphic to a projective variety Xp.

Remark 2.5. The following proposition tell us when the meromorphic map is an actual morphism,
using the rigidty lemma.

Let f : X 99K Y be a bimeromorphic map with the resolution of indetermancy.

W

X Y

p q

then if any C ⊂W p-exceptional is also q-exceptional. Then the birational map is also a morphism.

Definition 2.6 (Moishezon space, second definition). A proper, irreducible, reduced analytic space
X is Moishezon if

a(X) := tr degCM(X) = dim(X)

that is, it has dimX number of algebraic dependent meromorphic function.

Definition 2.7 (Moishezon space, third definition). A proper irreducible, reduced analytic space
X is Moishezon if it carries a big rank 1 reflexive sheaf F . Here the big rank 1 reflexive sheaf
means that the induced Kodaira map g : X 99K P(H0(X,F )) is bimeromorphic onto it’s image.
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Proposition 2.8. Three different definitions for Moishezon spaces above are equivalent.

Proof. see e.g. [Uen75].

The first important property for Moishezon space is that it locally looks like quasi-projective scheme
up to a étale cover.

Proposition 2.9 ([Kol22, Proposition 8.2]). Let X be a Moishezon space. For every x ∈ X there
is a pointed quasi-projective scheme (x′, X ′) and an étale morphism (x′, X ′) → (x,X).

Proof. It’s quite difficult; for the sake of time, we omit it here. For the curious reader, please refer
to [Art70].

Lemma 2.10 (Existence of Galois closure). Let π : X ′ → X be a finite covering between normal
analytic varieties. Then there exists a finite Galois covering φ : X ′′ → X from a normal analytic
variety X ′′ which factors through π which is universal in the following sense:

X ′

X ′′ X

π

φ

For any finite Galois covering ψ : Y → X from a normal analytic variety which factors through π,
there exists uniquely a Galois covering Y → X ′′ over X ′.

Using the existence of Galois closure, we can write a normal Moishezon space globally as a quotient
of a proper variety by a finite group.

Proposition 2.11 ([Kol22, Proposition 8.3]). Let X be a Mosiehzon variety. If X is normal, then
there is a proper variety Y and a finite group G that acts on Y such that X ∼= Y/G. (Note that in
general Y can not be chosen projective.)

Proof. First, by Proposition 2.11, there exists some étale cover of X (indeed, since the étale mor-
phism is finite, we can find an open cover of X be the étale morphism). Since X is proper, we
can find some finite cover of it. Now by the previous lemma we can take the Galois closure of the
finite étale cover Xi → X. We then apply the universal property of the Galois closure, thus it is
possible to patch the collection of Galois closures {Xi → X} together in the Zariski topology via
gluing lemma (see e.g. Hartshorne Exercise II 2.12.), and therefore we can get a finite covering of
X, Y → X and thus X ≃ Y/G.

Artin [Art70] proved the following theorem, demonstrating the importance of the category of
Moishezon spaces in moduli theory.

Proposition 2.12 ([Art70, Theorem 7.3]). There is a natural functor

an : (algebraic space of finite type over C) → (complex spaces)
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extending the functor an on the category (schemes of finite type /C). This functor induces an
equivalence of categories

(complex algebraic schemes of finite type/C) → (Moishezon spaces).

In other words, every Moishezon space is in an unique way an algebraic space.

We next prove that a Kahler Moishezon space with 1-rational singularity is a projective variety.
Before proving the theorem, let us first state two results that will be used in the proof.

Lemma 2.13. Let X be a compact Moishezon space with 1-rational singularity, that is, X is
normal and has a resolution π : Y → X such that R1π∗OY = 0. Then an analytic homology class
b ∈ A2(X,Q) is zero if it is numerically equivalent to 0. In particular,

A2(X,Q) = N1(X)Q ⊂ H2(X,Q).

Lemma 2.14 (Nakai-Moishezon criterion for Q-line bundles over Kähler Moishezon space). Let X
be a Kähler Moishezon space with a Kähler form ω. Assume that an element L ∈ Pic(X)Q satisfies
the equality for any curve C ⊂ X :

(C.L) =

∫
C
ω.

Then L is ample.

Proposition 2.15 ([Nam02]). Let X be a Moishezon space with 1-rational singularity. If X is
Kähler, then X is projective.

Proof of the Proposition 2.15. Since the numerical equivalence and the homological equivalence
coincide for (analytic) 1-cycle by Lemma 2.13, we have a natural map

α : N1(X)Q → (A2(X,Q))∗ , d 7→ (− · d),

and α is an isomorphism (by duality of N1(X)Q and N1(X)Q).

Note that ω ∈ H2(X,R) Kähler form as an element of (A2(X,R))∗. By simply define

αω : A2(X,R) → R, C 7→ ω · C =

∫
C
ω.

Since αR is surjective, there is an element d ∈ N1(X)R such that

(C · d) =
∫
C
ω,

for every curve C ⊂ X.

We then approximate d ∈ N1(X)R by a convergent sequence {dm} of rational elements dm ∈
N1(X)Q.

Let us fix the basis b1, . . . , bl of the vector space N1(X)Q. Each bi is represented by an element
Bi ∈ Pic(X)Q via the quotient

Pic(X)Q → N1(X)Q = Pic(X)Q/ ≡, Bi 7→ bi,
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Now d (resp. dm) is represented by an element in Pic(X)R (resp. Pic(X)Q )

D := ΣxiBi,

(resp. Dm := Σx
(m)
i Bi ) such that limx

(m)
i = xi. Put Em := Dm − D. Then there are d closed

(1, 1)-forms αm corresponding to Em such that {αm} uniformly converge to 0 .

If m is chosen sufficiently large, then ωm := ω + αm is a Kähler form. Since

(C.Dm) =

∫
C
ωm > 0,

for every curve C ⊂ X. We see that Dm is ample by Lemma 2.14 (Note that we have Dm being
a Q-divisor, so that it’s possible to apply the Nakai-Moishezon criterion). In particular, X is
projective.

Remark 2.16. There exist some Kähler Moishezon spaces with bad singularity that are not pro-
jective. (As we shall see in the last section).

Proposition 2.17 ([Kol22, Proposition 8]).
(1) Let X be a Moishezon space, if Z → X be finite then Z is Moishezon.

(2) Let X be a Moishezon space, and f : X → Y be a surjective morphism of complex varieties.
Then Y is also Moishezon.

(3) Let X be a Moishezon space, assume that Z ⊂ X is Mosiezhon, then

Proof of (1). By definition
trdegCK(X) = dimX,

and if Z is finite map then
K(X) ↪→ K(Z),

is a finite field extension. Therefore by additive property for a tower of field extensions, we have

trdegC(K(Z)) = trdegC(K(X)) + trdegK(X)K(Z) = trdegC(K(X)).

Proof of (2). It will be generalized in to the relative version, see 3.14.

Proof of (3). Consider the following pull back diagram.

Zp = f−1(Z) Xp

Z X

fZ f

Clearly Zp is projective (as subvariety of Xp), and fZ is surjective (by definition of Zp). Therefore,
by (2), we know that Z is again Moishezon.

The following proposition shows that the Moishezon manifolds admit strong Hodge decomposition.
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Proposition 2.18. If X is a Moishezon manifold, then the Hodge decomposition holds, indeed a
Moishezon manifold admits strong Hodge decomposition.

Before proving the theorem, let us first define what is strong Hodge decomposition. We say that a
compact manifold admits a strong Hodge decomposition if the natural maps

Hp,q
BC(X,C) −→ Hp,q(X,C), [αp,q]BC 7→ [αp,q]∂̄

⊕
p+q=k

Hp,q
BC(X,C) −→ Hk(X,C),

∑
[αp,q] 7→

∑
αp,q,

are isomorphisms.

Remark 2.19. As a direct consequence, we see that a Moishezon manifolds admits the Du Bois
property, that is

H i(X,C) → H i(X,OX),

is surjective for all i ≥ 0. (which will be used in the third note).

Proof. The idea of the proof comes from [Dem97, Proposition (12.3)]. We first take the projective
modification

µ : X̃ → X,

such that X ′ is a projective manifold. And therefore X ′ admits a strong Hodge decomposition. On
the other hand

We first observe that µ⋆µ
⋆β = β for every smooth form β on Y . In fact, this property is equivalent

to the equality ∫
Y
(µ⋆µ

⋆β) ∧ α =

∫
X
µ⋆(β ∧ α) =

∫
Y
β ∧ α.

for every smooth form α on Y , and this equality is clear because µ is a biholomorphism outside
sets of Lebesgue measure 0 (which holds in general for a proper surjective bimeromorphic map).

Consequently, the induced cohomology morphism µ⋆ is surjective and µ⋆ is injective (but these
maps need not be isomorphisms).

Now, we have commutative diagrams with either upward or downward vertical arrows. Hence the
surjectivity or injectivity of the top horizontal arrows implies that of the bottom horizontal arrows.

We next introduce Campana’s Moishezon criterion. The proof uses the core reduction he introduced.

Proposition 2.20 ([Cam81, Corollaire on p. 212]). Let X be a compact complex variety in the
Fujiki class C . Then X is Moishezon if and only if X is algebraically connected.
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As an immediate consequence.

Corollary 2.21. A compact Kahler manifold is projective iff it’s algebraically connected.

Proposition 2.22. Let f : X → B be a fibration over an algebraically connected variety (e.g. a
projective curve). Assume that X is in the Fujiki class C and the general fiber of f is algebraically
connected, then X is Moishezon if and only if f has a multi-section.

Proof. The proof is clear, since admit multi-section implies the algebraic connectedness of X.

Remark 2.23. For readers interested in the applications of the algebraic connectedness criterion,
I recommend the paper by [Lin23]. He try to addresse the following question.

Question 2.24 (Oguiso–Peternell problem, [Lin23, Problem 1.2]). Let X be a compact Kähler
manifold of dimension n such that Int (Psef(X)∨) (or Int (K (X)∨) for dual Kähler cone K (X))
contains an element of H2n−2(X,Q). Is X always projective? If not, how algebraic is X ?

3 Moishezon morphisms

Let us first recall the definition of a projective morphism.

Definition 3.1 (Projective morphism, first definition). Let X → S be a proper morphism between
complex spaces. f is projective if there exists a locally free coherent sheaf E of finite rank such that
there exists a closed S-immersion X ↪→ PS(E), with the following diagram commute.

X PS(E)

S

Definition 3.2 (Projective morphism, second definition). Let X → S be a proper morphism
between complex spaces. f is projective if X can be embedded in PN × S for some N , with the
following the diagram commute.

X PN × S

S

Note that Kollár adopt the second definition.

Definition 3.3 (Locally projective morphism). Let f : X → S be a proper morphism of complex
spaces. We call f locally projective if for every relatively compact open subset Q of S the restriction
fQ : XQ → Q is a projective morphism.

Remark 3.4. Easy to see the second definition will immediate implies the first definition. Converse
direction also holds when the base is Stein or quasi-projective.
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Proof. Assume we have the 1st definition, so that f : X → S and g : Y = PS(f∗L⊗m) → S. Let
A be an g-ample line bundle. And, therefore by Serre vanishing theorem over some Stein compact
subset B ⊂ S, for some sufficient large n≫ 0, we have

g∗g∗(E ⊗A⊗n) → E ⊗A⊗n,

is surjective. Since the base S is Stein, by Cartan A theorem, g∗(E ⊗ A⊗n) is global generated.
And therefore so it’s the pull back g∗g∗(E ⊗A⊗n). Since the surjective map sends global generated
coherent sheaf to global generated coherent sheaf. This means that E ⊗A⊗n is global generated.

By coherence of E ⊗ A⊗n, the cohomology group V = H0(Y, E ⊗ A⊗n) is finite dimensional. And
there is a surjection

V ⊗OY → E ⊗A⊗n.

And therefore it will induce an embedding

X ↪→ PB (E) = PB

(
E ⊗A⊗m

)
↪→ P(V )×B,

after shrink the base B ⊂ S.

Remark 3.5. When the total space has only finite number of irreducible components, then a locally
projective morphism is bimeromorphic to a projective morphism. (see [Fuj83, Lemma 1.3.1]).

In what follows, we may assume that the base S is reduced. However, in general, we do not require
the total space X to be reduced or not.

Definition 3.6 (Moishezon morphism, 1st definition). A proper morphism of analytic spaces g :
X → S is Moishezon if g : X → S is bimeromorphic to a projective morphism gp : Xp → S.

That is, there is a closed subspace Y ⊂ X ×S X
p such that the coordinate projections Y → X and

Y → Xp are bimeromorphic.

Y

X Xp

S

Definition 3.7 (Moishezon morphism, 2nd definition). A proper morphism of analytic spaces
g : X → S is Moishezon if There is a projective morphism of algebraic varieties G : X → S and a
meromorphic ϕS : S 99K S such that X is bimeromorphic to X × SS, the fiber product of rational
maps is defined where the maps are defined, so on a dense open set.

Remark 3.8. Let us say few words about the fiber product for a rational map ϕS : S 99K S, the
fiber product is defined on the place that ϕS is holomorphic map.

Definition 3.9 (Moishezon morphism, 3rd definition). A proper morphism of analytic spaces
g : X → S is Moishezon if there is a rank 1, reflexive sheaf L on X such that the natural map
X 99K ProjS (g∗L) is bimeromorphic onto the closure of its image.
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Proposition 3.10. Three definitions of Moishezon morphism are equivalent.

Proof. Definition 3.7 equivalent to the Definition 3.6 is clear (using Proposition 3.16). Conversely,
if there exists a projective family Xp → S that bimeromorphic to a given f : X → S, then by
generic flatness we know gp : Xp → S is flat over So for some Zariski open subset So ⊂ S, and
therefore using the definition of projective family, there exist a morphism

So → Hilb(PN )

such that the projective family is the pull back

Xp M

S Hilb(PN )

We now show that the first definition and third definition are equivalent. From third definition
to first definition is clear since ProjS(f∗L) is projective over S. Conversely, if f : X → S is
bimeromorphic to a projective morphism Xp → S. Then since we assume X is normal, therefore
the meromorphic map X 99K Xp is morphism outside codimension 2 subset. And the pull back
(ϕo)∗OX(1) is a big line bundle defined on a big open subset, which can be extended uniquely to a
big rank 1 reflexive sheaf.

Remark 3.11. The termiology in different paper are different, we can summarize it as below.

Figure 1: Definitions in different papers

Moishezon morphism satisfies the following Chow type lemma (which can be viewed as the deter-
ministic property of a Moishezon morphism).

Theorem 3.12 ([DH20, Lemma 2.18]). Let f : X → S be a proper surjective morphism of analytic
varieties, and let L be a f -big line bundle on X and D a Q-divisor. Then

(1) Over any relatively compact open subset V ⊂ S, there exists a proper (indeed it’s projective
see [CH24]) bimeromorphic morphism α :W → f−1V from a smooth analytic variety W such that
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β = f |f−1V ◦ α :W → V is a projective morphism and,

(2)
(
W,α−1

∗

(
D|f−1V

)
+ Ex(α)

)
is a log smooth pair.

First, let us compare the theorem above with the Definition 3.6, in the Definition, we only as-
sume the existence of some bimeromorphic S-map, the Chow lemma allows us to choose some
bimeromorphic projective morphism.

Proof. Let ϕ : X 99K Y be the relative Iitaka fibration of L over S and g : Y → S the induced
projective morphism. Since L is f -big, ϕ : X 99K Y is bimeromorphic. Let p : Γ → X and
q : Γ → Y be the resolution of indeterminacy of ϕ so that p is proper.

Γ

X Y

S

p q

ϕ

f g

Now fix a relatively compact open subset V ⊂ S. Choose another relatively compact open set
U ⊂ S containing V such that V̄ ⊂ U . Note that U is σ-compact, since it is relatively compact.
Since f and g are both proper morphisms, it follows that XU := f−1U and YU := g−1U are both
σ-compact. Let ΓU := q−1

(
g−1U

)
= p−1

(
f−1U

)
. Then from the commutative diagram above it

follows that q|ΓU
: ΓU → g−1U is a proper morphism. In particular, ΓU is σ-compact. Note that

q|ΓU
is bimeromorphic. Therefore there is a projective bimeromorphic morphism h : Z → ΓU from

an analytic variety Z such that q|ΓU
◦ h : Z → YU is a projective bimeromorphic morphism. Since

g is projective, so is Z → U .

Now we replace U by our previously fixed open set V . Then ZV := (g◦ q ◦ h)−1V is a relatively

compact open subset of Z. Let r : W → ZV be the log resolution of
(
ZV , (p ◦ h)−1

∗

(
D|f−1V

))
.

Let α := p|ΓV
◦ h

∣∣∣
h−1ΓV

◦ r and β := g|g−1V ◦ q
∣∣∣
ΓV

◦ h
∣∣∣∣
h−1ΓV

◦ r, where ΓV := p−1
(
f−1V

)
=

q−1
(
g−1V

)
. Note that β is a projective morphism, since it is a componsition of projective mor-

phisms over relatively compact bases.

Then α :W → f−1V is a proper bimeromorpic morphism and β :W → V is a projective morphism

such that β = f |f−1V ◦ α and
(
W,α−1

∗

(
D|f−1V

)
+ Ex(α)

)
is a log smooth pair.

Proposition 3.13 ([Fuj83, Proposition 1.5.(4)]). Suppose that there exists a locally projective
morphism g : Y → S and a generically finite meromorphic S-map h : X 99K Y . Then f is
Moishezon.

X Y

S

h

f g
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Proof. First since being Moishezon is stable under bimeromorphic change, without lose of generality
we can assume that h is a morphism. Since Moishezon morphism and locally projective morphism
are proper. So that h is proper. Apply the Stein factorization theorem, such that h2 is projective
(since h2 is finite) and h1 is proper. Thus, the composition g ◦ h2 is locally projective. And thus
by definition X → S is a Moishezon morphism.

X∗

X Y

S

h2h1

h

g

Proposition 3.14 ([Fuj83, Proposition 1.7]). Let f : X → S be a Moishezon morphism, and
g : Y → S a proper morphism, of reduced complex spaces. Suppose that there is a generically
surjective meromorphic S-map h : X 99K Y . Then g also is Moishezon.

Proof. This Proposition can be viewed as a generalization of the Proposition 2.17. The proof is a
bit involving, and we omit it here.

Proposition 3.15 ([Fuj83, Proposition 1.5]).
(1) The morphism f : X → S is Moishezon if and only if for each irreducible component Xi of X
the restriction f = f |Xi

: Xi → S is Moishezon.

(2) Let f : X → S be a Moishezon morphism. Then: For every reduced analytic subspace X ′ ⊆ X
the induced morphism f ′ = f |X′ : X ′ → S is Moishezon.

Proof. For (1), let’s take the normalization

ν : Xν → X,

recall that for a reduced complex space with finite many irreducible component, the normalization
is a bimeromorphic map. So that f : X → S is Moishezon iff the restriction on each component Xi

are Moishezon.

For (2), by the Chow lemma (Theorem 3.12), we can find some locally projective morphism such
that X∗ is smooth and h is a bimeromorphic S-morphism.

X∗ X

S

h

g f

We then take the inverse image of the analytic subspace X ′ denote it Z = h−1(X ′). (we can
assume the inverse image has reduced structure). Since the restriction of the projective morphism
on g|Z : Z → S is still locally projective. And by construction, clearly the morphism Z → X ′ is
surjective. And therefore, by Proposition 3.14, we know that X ′ → S is a Moishezon morphism.
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Restriction on the image side will also preserve the Moishezon condition.

Proposition 3.16 (A morphism is Moishezon iff it’s Moisheozn onto its image). Let f : X → S
be a proper morphism between analytic spaces, let f ′ : X → f(X) = Y ⊂ S be the restriction,
then f is Moishezon (resp. projective) iff f ′ is Moishezon (resp. projective).

Proof. It’s enough to prove the case for projective morphism case (and Moishezon morphism case
follows easily).

To see this, assume that we the morphism f : X → S is projective, by definition there it factor
through the X ↪→ Pn

S → S. Doing base change on Y ↪→ S, proves the projective of X ↪→ PY → Y .

Converse direction is clear, since The composition X → f(X) ↪→ S can be written as:

X ↪→ Pn
f(X) → f(X) ↪→ S.

Since Pn
f(X) = Pn

S ×S f(X), we can rewrite the morphism as:

X ↪→ Pn
S ×S f(X) ↪→ Pn

S → S,

where the second second inclusion is because f(X) ↪→ S and so it’s the projective bundle.

Proposition 3.17. When the base is Moishezon then the total space is Moishezon iff the morphism
is Moishezon.

Proof. We first prove that morphism between Moishezon space is a Moishezon morpihsm. Let us
define the graph embedding to be

ι : X → X × S, x 7→ (x, f(x)),

since X is Moishezon it’s bimeromorphic to a projective variety, as the diagram below shows

X X × S Xp × S

S

ι

f
π

πp

Clearly, πp is a projective morphism. And consequently π is a Moishezon morphism. And finally
by Proposition 3.15, the morphism f : X → S is again Moishezon.

Conversely, if the morphism is Moishezon, and S is Moishezon space. Then there exist bimeromor-
phic modifications such that the following diagram commute

Xp X ′ X

Sp S

12
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Where X ′ → S is a projective morphism and Sp is a projective variety. Since the base change
preserve the projective condition, easy to see that Xp → Sp is a projective morphism over Sp. And
therefore Xp is a projective variety. By Proposition 3.14, X ′ is a Moishezon space. Since X ′ → X
is bimeromorphic, this implies that X is also Moishezon.

Proposition 3.18 ([Kol22, Lemma 15]). Let g : X → S be a proper, generically finite, dominant
morphism of normal, complex, analytic spaces. Then Ex(g) → S is Moishezon.

Proof. We will prove the result under the additional assumption that S is Stein. By the geometric
Noether normalization theorem, there exists a finite morphism

S → CdimS .

After replacing the base by CdimS , we can assume that smooth locus of S is dense in g(Ex(g)).
Note that, by Proposition 3.13, if the restriction on CdimS is Moishezon, then so will the restriction
on S. We will prove the result by induction on dimension.

We first define the base case (g0 : X0 → S0) := (g : X → S). Let E0 be a g0 exceptional divisor,
with the image Z0 = g0(E0). We then inductively define the morphism gi+1 : Xi+1 → Si+1 as
follows. Assume that we already construct gi : Xi → Si, we then blow up Si along Zi. We
then blow up Si along Zi and let Si+1 be the normalization of the blow-up BlZiSi. Since Si is
reduced, this will induce a generic finite map ϕ : Xi 99K Si+1. So that by the universal property
of the normalization, the generic finite morphism gi : Xi → Si lift to a generic finite morphism
gi+1 : Xi+1 → Si+1, where Xi+1 is the normalization of the graph of the map ϕ : Xi 99K Si+1.

Xi+1 Si+1 = BlZi(Si)
ν

Γϕ BlZi(Si)

Xi Si

gi+1

ϕ

gi

Let Ei+1 ⊂ Xi+1 denote the bimeromorphic transform of Ei. (Note that Xi+1 → Xi is an isomor-
phism over an open subset of Ei). We then compute the vanishing order a(Ei, Si) of Jacobian of
gi along Ei. We claim that

a (Ei+1, Si+1) ≤ a (Ei, Si) + 1− codim (Zi ⊂ Si) .

Thus eventually we reach the situation when codim (Zi ⊂ Si) = 1, indeed if codim (Zi ⊂ Si) ≥ 2
then the Jacobian of gi along Ei will eventually goes to zero. Contradiction.

Thus by comparing the dimension we know when restrict the morphism Xi → Si to Ei → Zi it will
become a generic finite morphism. Since Si+1 → Si is projective, the composition Zi → Z0 will be
a locally projective morphism.

Ei Zi

Z0
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By Proposition 3.13, we know that Ei → Z0 is a Moishezon morphism. Since the strict transform
Ei → E0 is a dominant morphism, by Proposition 3.14, we know that E0 → Z0 is also Moishe-
zon morphism. Finally, by Proposition 3.15 and Proposition 3.16, we know that Ex(f) → S is
Moishezon.

Theorem 3.19 (Fibers of the Moishezon morphism are Moishezon spaces, [Kol22, Corollary 16]).
The fibers of a proper, Moishezon morphism are Moishezon.

Proof. Let g : X → S be a proper, Moishezon morphism. It is bimeromorphic to a projective
morphism Xp → S. We may assume Xp to be normal. Let Y be the normalization of the closure
of the graph of X 99K Xp.

Y

X Xp

S

Fix now s ∈ S. Let Zs ⊂ Xs be an irreducible component, since given a proper dominant morphism,
there exist at least one irreducible component dominant the base, there existWs ⊂ Ys an irreducible
component that dominates Zs. And by Proposition 3.14 and Proposition 3.15, it’s enough to show
that Ws is Moishezon. We divide the problem into two cases:

If π : Y → Xp is generically an isomorphism along Ws, then Ws is bimeromorphic to an irreducible
component of Xp

s , hence Moishezon.

Otherwise Ws ⊂ Ex(π). Now Ex(π) → Xp is Moishezon by Proposition 3.18. And by induction on
dimension, since dimEx(π) < dimX = dimY , the fiber Ws is Moishezon.

Proposition 3.20 ([Kol22, Example 13]). Let Z be a normal, projective variety with discrete
automorphism group. Let g : X → S be a fiber bundle with fiber Z over a connected base S. Then
g is Moishezon ⇔ g is projective ⇔ the monodromy is finite.

Remark 3.21. The monodromy here is different from the cohomological monodromy. Here the
monodromy is refered as the fiber bundle monodromy

ρ : π1(S) → G ⊂ Aut(Z)

where G ⊂ Aut(Z) is the structure group of the fiber (e.g. when the fiber bundle is principal
G-bundle, then the structure group is simply the group G). Finite monodromy condition means
that im(ρ) ⊂ G is a finite subgroup.

Before proving the theorem, let us state a lemma from fiber bundle theory, that is useful in what
follows (which can be viewed as generalization of Ehersmann theorem over a simply connected base,
when the base is simply connected, the fiber bundle is automattically trivial).

Lemma 3.22. Let g : X → S be a fiber bundle with trivial monodromy group, then the fiber
bundle is actually a trivial fiber bundle.

14
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The following proposition about the automorphism of polarized projective variety will be useful in
the proof.

Proposition 3.23. Let Z be a projective variety, and L an ample line bundle over Z. Then
Aut(Z,L) = {ϕ ∈ Aut(Z) | c1(ϕ∗L) = c1(L)} is finite if the automorphism group Aut(Z) is
discrete.

Proof. Let
ϕ : Z → Z ∈ Aut(Z,L),

consider the graph Γϕ ⊂ Z × Z, thus the Hilbert polynomial of Γϕ relative to L⊠ L is given by

Hϕ(n) = χ(Γϕ, (L⊠ L)n) = χ(Z,L⊗n ⊗ ϕ∗(L⊗n)).

On the other hand, since c1(ϕ
∗L) = c1(L), so that easy to see that L⊗n ⊗ ϕ∗(L⊗−n) is numerical

trivial, and thus

H(n) = χ(Z,L⊗n ⊗ ϕ∗(L⊗n)⊗ L⊗n ⊗ ϕ∗(L⊗−n)) = χ(Z,L⊗2n),

which is independent of ϕ and denote it P (n) = Hϕ(n). So that the graph lies on HilbPZ×Z (with
fixed Hilbert polynomial P (n)), which is of finite type. Thus contains finite many irreducible
components (by Noetherian proprty). On the other hand, since Z is projective, each irreducible
component of the Hilbert scheme is proper. Thus Aut(Z,L) is finite.

The idea of the proof of the theorem is provided by Professor Kollár.

Proof of the theorem. Only needs to show that (1) implies (3) and (3) implies (2). For (3) implies
(2), we try to take the étale base change so that the fiber bundle becomes trivial bundle. We
can do as follows, Consider ρ(π1(S)) ⊂ Aut(Z) is finite, let S′ → S be the corresponding finite
(unbranched) cover that kills the monodromy. Indeed since we have the

ρ : π1(S) → G

then the kernel of ker(ρ) is a subgroup of π1(S) is finite index, therefore by the Galois correspondence
for covering, there exist finite étale cover of the base

S̃ → S,

such that monodromy of the fiber bundle under the base change becomes trivial, then by the
previous lemma, after the base change the fiber bundle becomes trivial bundle

Z × S̃ → S̃,

clearly the morphism is projective and admits an relative ample line bundle L (since Z is projective).
And therefore if we define

L′ =
⊗
g∈Γ

g∗L.

Since L′ is monodromy invariant, the ample line bundle will descend to the original fiber bundle
g : X → S and thus g is a projective morphism.

15
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For (1) implies (3). Since g : X → S is Moishezon, by Definition 3.9, there exists a g-big (rank 1
reflexive sheaf) H on X (since it’s fiber bundle so the restriction on Z is again big and denote it
also as H). Given an ample line bundle L on the fiber Z, we consider the monodromy action on
L, which pulls back the ample line bundle to another ample line bundle Lγ = ρ(γ)∗L.

Note that under the monodromy action, the intersection

d := H · (Lγ)
n−1,

remain the same for all γ.

We then consider the linear functional

ℓ : N1(Z)R → R, M 7→Mn−1 ·H,

if we restrict the linear functional on the ample cone Amp(Z), then

Sd = {M ∈ N1(Z)R ∩Amp(Z) |Mn−1 ·H = d},

is a bounded slice. To see this, by the Khovanskii-Teissier inequality we have(
H ·Mn−1

)n ≥ (Hn) (Mn)n−1 ,

thus we get

vol(M) ≤
(
dn

Hn

) 1
n−1

,

so that it’s bounded (for a fixed H). Thus the slice contains only finite many lattice points of
NS(Z).

#{M ∈ NS(Z) ∩Amp(Z) | ℓ(M) = d} <∞.

In particular, the ample line bundle on the monodromy orbit is finite

Γ · L = {Lγ := ρ(γ) · L | γ ∈ π1(S)} ⊂ {M ∈ NS(Z) ∩Amp(Z) | ℓ(M) = d}.

This will force the monodromy to be finite, indeed apply the orbit-stablizer theorem

|Γ| = |Γ · L||Stab(L)| < +∞

Thus only needs to prove the Stab(L) = Aut(Z,L) = {ϕ ∈ Aut(Z) | ϕ∗L = L} is finite. On the
other hand, since Aut(Z) is discrete, by Proposition 3.23, this means that Stab(L) = Aut(Z,L) is
finite.

4 Examples

In this section, we will present varies examples related to the Moishezon space and Moishezon
morphism.

16



4.1 The Hironaka’s example 17

4.1 The Hironaka’s example

Hironaka discovered a bunch of complete non-projective 3-fold which is called Hironaka’s varieties.
Note that based on the construction of Hironaka, we can from almost all the projective varieties
construct some Moishezon spaces, that is why we said at the beginning that Moishezon spaces are
versatile in birational geometry. (However, this is not true in dimension 2, since all the smooth
Moishezon surface are actually projective, see e.g. [GPR94]). The major reference of this part of
note is the paper by Ulrich Thiel (see https://ulthiel.com/math/wp-content/uploads/other/
hironakas_example.pdf).

Given a smooth projective threefold, which contains two rational curves transversely intersection
at two points. Assume that two rational curves are C and D that intersect at the point P,Q.

We then take two steps, blow up

X1 = Bl(D\P )′
(
BlC\P (X\P )

) π2−→ BlC\P (X\P ) π1−→ X\P

X2 = Bl(C\Q)′
(
BlD\Q(X\Q)

) σ2−→ BlD\Q(X\Q)
σ1−→ X\Q,

Note that if we define U = X − {P,Q}, then π−1(U) ∼= σ−1(U). In particular, we can glue X1 and
X2 along π−1(U) and σ−1(U). In the picture below, we glue the red exceptional surface on the
right hand side with the black exceptional surface on the left hand side (denote it S1) and the blue
exceptional surface on the left hand side with the black exceptional surface on the right hand side
(denote it S2). (see pictrue 2). By the gluing lemma, there exists a morphism f : H → X and the
restriction of the morphism on S1, S2 as f1 = f |S1 : S1 → C and f2 = f |S2 : S2 → C.

Figure 2: Construction of the Hironaka’s variety

17
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4.2 Flop the lines on general quntic threefold produce Moishezon variety 18

We claim that Hironaka’s variety is non-projective. The idea to prove the non-projective is to find
some curve on the surface S = S1 ∪ S2 which has positive degree but add up to 0.

The key observation is that f−1(P ) (resp. f−1(Q)) decompose into two split projective lines LQ

and L′
Q in S1 (resp. LP and L′

P in S2). (see the precise statement below).

Choose two points A ∈ C − {P,Q} and B ∈ D − {P,Q}. Since all the points on a rational curve
are linear equivalent, therefore

A ∼C Q =⇒ f−1
1 (A) ∼S1 f

−1
1 (Q) = LQ + L′

Q

B ∼D P =⇒ f−1
2 (B) ∼S2 f

−1
2 (P ) = LP + L′

P

and Push forward of cycle, we get equivalence on S.

I : f−1(A) ∼S f
−1(Q) = LQ + L′

Q

II : f−1(B) ∼S f
−1(P ) = LP + L′

P

On the other hand we also that B,Q lies in the same rational curve, so that

III : B ∼D Q⇒ f−1
2 (B) ∼S2 f

−1
2 (Q) ⇒ f−1(B) ∼S L

′
Q

and combined then together, we get

f−1(A) + f−1(B) ∼S f
−1(A) + f−1(B) ⇒ LQ + L′

Q + LP + L′
P ∼S L

′
Q + L′

P

⇒ LQ + LP ∼S 0

If there exist some ample divisor on A, then both LQ ·A > 0 and LP ·A > 0 contradict the linearly
trivial relation above. Therefore the only possible case is Hironaka’s variety is non-projective.

4.2 Flop the lines on general quntic threefold produce Moishezon variety

4.3 Locally Moishezon morphism which is not globally Moishezon

There are rational and K3 surfaces with infinite, discrete automorphism group. These lead to fiber
bundles over the punctured disc D◦ that are locally Moishezon but not globally Moishezon (using
the Proposition 3.22).

4.4 Singular Kähler Moishezon space needs not to be projective

By blowing down elliptic curves, such an easy example is not possible. Instead, consider a cubic
C ⊂ P2 and let x1, . . . , x10 be general points on C. Let f : X → P2 be the blow-up of these
point. Then the strict transform Ĉ of C in X is elliptic with Ĉ2 = −1. It can be shown that the
blow-down of Ĉ is not projective.

4.5 Fiberwise projective morphism needs not to be projective morphism

Let S0 := (g = 0) ⊂ P3
x and S1 := (f = 0) ⊂ P3

x be surfaces of the same degree. Assume that
S0 has only ordinary nodes, S1 is smoothPic (S1) is generated by the restriction of OP3(1) and S1

18
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does not contain any of the singular points of S0. Fix m ≥ 2 and consider

Xm := (g − tmf = 0) ⊂ P1
x × A1

t .

The singularities are locally analytically of the form xy+z2−tm = 0. ThusXm is locally analytically
factorial if m is odd. If m is even then Xm is factorial since the general fiber has Picard number 1,
but it is not locally analytically factorial; blowing up

(
x = z − tm/2 = 0

)
gives a small resolution.

Thus we get that (4.1) Xm is bimeromorphic to a proper, smooth family of projective surfaces iff
m is even, but (4.2) Xm is not bimeromorphic to a smooth, projective family of surfaces.
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