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Fiberwise Bimeromorphic Problems Summer 2025

Note 2 — 2025-07-09 (draft version)

Yi Li

1 Overview

The aim of this note is to study the fiberwise bimeromorphic problems. To be more concrete, we
consider the following two problems. The first one is:

Question 1.1. Let

π : X → B and π′ : X ′ → B,

be proper flat morphisms from a complex analytic space to a smooth connected curve B. Assume
that the generic fibers of π and π′ are bimeromorphic. Under what conditions, the special fibers
between these two families also admit a certain bimeromorphic relation?

The second one focuses on the Moishezon morphisms, under which condition we can let a Moishezon
morphism fiberwise bimeromorphic to a projective morphism:

Question 1.2. Let g : X → D be a flat, proper, Moishezon morphism. Under which conditions, it
is actually fiberwise bimeromorphic to a projective morphism gp : Xp → D?

We will discuss the first question in Sections 2–4 and the second question in Section 5. The main
references for this note are [Kol22] and [CRT25], [KT19].
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2 A Fiberwise Birational Criterion

We first recall the definition of the meromorphic S map that we introduced in the first time.

Definition 2.1 (Meromorphic S-map). Let X,Y be reduced complex spaces. We call the S-map
a meromorphic S-map

Γ

X Y

S

p q

α

f g

if there exists a subvariety Γ ⊂ X ×S Y with the restriction of the first projection p : Γ → X be a
proper bimeromorphic morphism. Moreover, if the restriction on the second projection q : Γ → Y
is also a proper bimeromorphic morphism, then we call α proper bimeromorphic S-map.

Definition 2.2 (Fiberwise bimeromorphic map, [Kol22, Definition 26]). Let gi : Xi → S be a
proper morphisms. A bimeromorphic S-map ϕ : X1 99K X2/S is fiberwise bimeromorphic if ϕ
induces a bimeromorphic mapϕs : X

1
s 99K X2

s for every s ∈ S.

Remark 2.3 (Fiberwise bimeromorphic ̸= fibers bimeromorphic equivalent, [CRT25, Example
2.15]). Let Fn = P(OP1 ⊕OP1(n)) → P1 be the Hirzebruch surface of index n. By construction easy
to see that all the Hirzebruch surface are birational equivalent to P1 × P1. Let Z be any compact
complex manifold. So that Fn × Z → P1 is binational equivalent to (P1 × P1)× Z → P1.

Blp1,··· ,pn(P1 × P1)× Z

P1 × P1 × Z Fn × Z

P1

p q

q◦p−1

Note that fibers of these two families are birational equivalent (as both side have fiber P1 × Z).
However the restriction of the map q ◦ p−1 does not give the bimeromorphic map of the fiber (since
the strict transform of the fibers of P1 × P1 × Z via p−1 will be contracted by q).

Although the bimeromorphic map needs not to be fiberwise bimeromorphic in general, it is indeed
fiberwise bimeromorphic on a dense open subset. As the following proposition shows.

Proposition 2.4 (Bimeromorphic on the generic fiber). Let f : X 99K Y be a bimeromorphic
S-map between two proper surjective family g : X → S, h : Y → S over the base S. Then on the
generic fiber, the map f will induce a bimeromorphic fs : Xs 99K Ys.
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Proof. Since f is bimeromorphic, by definition, the graph Γ ⊂ X ×S Y will induce two bimeromor-
phic morphisms

p : Γ → X, q : Γ → Y,

such that there exists some non-empty analytic Zariski open subset UX ⊂ X, UY ⊂ Y with
p : p−1(UX) → UX , q : q−1(UY ) → UY be isomorphisms. On the generic fiber, the dimension
equalities hold

dimXs = dimX − dimS, dimYs = dimY − dimS.

On the other hand, if we denote the analytic subset EX = X − UX and EY = Y − UY , then the
intersection with the generic fiber Xs (resp. Ys), say

EX ∩Xs = EX,s, (resp. EY ∩ Ys = EY,s),

are proper analytic subset in Xs (resp. Ys). Indeed, only needs to show that dimEX,s < dimXs

(resp. dimEY,s < dimYs). As intersection of analytic subvariety is still analytic subvariety and
dimension strict less, it’s automatically proper analytic subset. Thus by definition ps : Γs → Xs

(resp. qs : Γs → Ys) are bimeromorphic morphisms. To see that dimEX,s < dimXs, we divide
it into two cases: (1) If g(EX) ⊂ S is proper analytic subset, then clearly the generic fiber has
dimEX,s = 0. (2) If g(EX) = S then the generic fiber dimEX,s = dimEX − dimS and we know
that dimEX < dimX and therefore

dimEX,s = dimEX − dimS < dimX − dimS = dimXs.

Since the base change preserves the properness, we have ps : Γs → Xs, qs : Γs → Ys are still proper.
Thus, complete the proof.

We now prove the first main theorem of this note, which is about the specialization of the birational
map when the pluricanonical system is non-empty.

Proposition 2.5 (Kollár’s Specialization of birational map, [Kol23, Proposition 1.25]). Let fi :
Xi → B be two smooth families of projective varieties over a smooth curve B. Assume that the
generic fibers X1

b and X2
b (for b ̸= 0) are birational, and further assume that the pluricanonical

system
∣∣∣mKXi

b

∣∣∣ is non empty for some m > 0. Then for every b ∈ B, the fibers X1
b and X2

b are

birational.

Proof. Pick a birational map ϕ : X1
b 99K X2

b (for the generic fiber), and let Γ ⊂ X1 ×B X2 be the
closure of the graph of ϕ. Let Y → Γ be the resolution of the graph with projections pi : Y → Xi.

Y

Γ

X1 X2

B

p1 p2

f1 f2
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Note that by definition, both of the pi are open embeddings on Y \ (Ex (p1)∪ Ex (p2)).

Thus if we prove that neither p1 (Ex (p1) ∪ Ex (p2)) nor p2 (Ex (p1)∪ Ex (p2)) contains a fiber of
f1 or f2, then p2 ◦ p−1

1 : X1 99K X2 (it needs not to be birational) restricts to a birational map
X1

b 99K X2
b for every b ∈ B.

We may assume that B is affine (as we only care about the special fiber, thus we can focus on the
affine base around b) and let Bs |mKXi | denote the set-theoretic base locus. Let Li = OXi(mKXi).
The direct image Ei = fi∗Li as a torsion free sheaf is locally free on the smooth curve B (so that
the vanishing locus of a section of Ei is a subvariety).

By assumption |mKXi
b
| ≠ ∅ for generic b ∈ B, we claim that |mKXi | is non-empty as well. Indeed,

since the restriction map
H0(Xi,mKXi) → H0(Xi

b,mKXi
b
),

is surjective on the generic fibers. Thus, the pluricanonical system on the generic fiber satisfies
|mKXi |Xi

b
= |mKXi

b
| ≠ ∅. In particular, this means that |mKXi | ≠ ∅.

On the other hand, since H0(X,mKXi) ̸= 0 and the base is affine, for any point s ∈ B, there exists
a non-zero section

0 ̸= σ ∈ H0(B, Ei),

such that σ(s) ̸= 0. Therefore consider the restriction commutative diagram (note that in general
it’s not clear the base change morphism H0(Xi

s, Li|Xi
s
) → Ei(s) is isomorphism or not on the special

fiber)

H0(Xi, Li) H0(Xi
s, Li|Xi

s
)

H0(B, Ei) Ei(s)

res

≃

res

there exists a section σ′ ∈ H0(Xi, Li) which maps down to σ ∈ H0(B, Ei) such that σ(s) ̸= 0. So
that σ′|Xi

s
̸= 0 in H0(Xi

s, Li|Xi
s
). And therefore the base locus Bs|mKXi | cannot contain the fiber.

Since Xi are smooth,

KY ∼ p∗iKXi + Ei, where Ei ≥ 0 and SuppEi = Ex (pi) .

So that every section of OY (mKY ) pulls back from Xi, Thus

Bs |mKY | = p−1
i (Bs |mKXi |) + SuppEi,

Comparing these for i = 1, 2, we conclude that

p−1
1 (Bs |mKX1 |) + SuppE1 = p−1

2 (Bs |mKX2 |) + SuppE2,

Therefore,

p1 (SuppE2) ⊂ p1 (SuppE1) + Bs |mKX1 |

Since E1 is p1-exceptional, p1 (suppE1) has codimension ≥ 2 in X1, hence it does not contain
any of the fibers of f1. Combined with Bs |mKX1 | does not contain any of the fibers either.
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Thus, p1 (Ex (p1) ∪ Ex (p2)) does not contain any of the fibers, and the same argument shows for
p2 (Ex (p1) ∪ Ex (p2)).

As a remark by [Kol23], the result holds true even when the pluricanonical systems are empty.
That is what we will prove in the next section.

3 Kontsevich-Tschinkel’s Fiberwise Birational Theorem

Theorem 3.1 ([KT19, Theorem 1]). Let

π : X → B and π′ : X ′ → B

be smooth proper morphisms to a smooth connected curve B, over a field of characteristic zero.
Assume that the generic fibers of π and π′ are birational over the function field of B. Then, for
every closed point b ∈ B, the fibers of π and π′ over b are birational over the residue field at b.

We first introduce some new notions that needed in the proof.

Definition 3.2 (semi-ring). A semi-ring (S,+,×) consists of a set S equipped with two binary
operations +,×. Such that + makes S a commutative monoid (which does not need to be an
Abelian group compared to the definition of a ring).

Definition 3.3 (Burnside semi-ring over a field k, [KT19, Definition 2]). The Burnside semi-
ring Burn+(k) of a field k is the set of ∼k equivalence classes of smooth schemes of finite type
over k endowed with a semi-ring structure where multiplication and addition are given by disjoint
union and product over k. (here the ∼k equivalence of two schemes X,X ′ are defined as follows:
X/k ∼k X ′/k if and only if X and X ′ are k-birational). To be more precise, the addition and
multiplication of semi-ring structure is defined as follows:

(a) Addition: Disjoint union [X] + [Y ] = [X ⊔ Y ].
(b) Multiplication: Cartesian product [X] · [Y ] = [X × Y ].

We then introduce the Grothendieck ring, and we denote Burn(k) the Grothendieck ring generated
by Burn+(k).

Definition 3.4 (The Grothendieck ring Burn(k)). The Grothendieck ring Burn(k) thhat is as-
sociated to the Bunrside semi-ring Burn(k)+ is defined as the set of equivalence classes of pairs
([X], [Y ]), where [X], [Y ] ∈ Burn(k)+. Intuitively, ([X], [Y ]) represents the ”difference” [X] − [Y ].
With the equivalence relation: We say ([X], [Y ]) ∼ ([X ′] , [Y ′]) if there exists [Z] ∈ Burn(k)+ such
that:

[X] +
[
Y ′]+ [Z] =

[
X ′]+ [Y ] + [Z].

The ring Operations is defined as follows

(a) Addition: ([X], [Y ]) + ([X ′] , [Y ′]) = ([X] + [X ′] , [Y ] + [Y ′]).
(b) Multiplication: ([X], [Y ]) · ([X ′] , [Y ′]) = ([X ×X ′] + [Y × Y ′] , [X × Y ′] + [Y ×X ′]).

Remark 3.5. The reason to introduce the Grothendieck ring over the Burnside semi-ring is that
it allows one to implement formal subtraction, cut and paste operations.
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Remark 3.6. Note that we can decompose the

Burn(k) = ⊔n≥0Birn(k),

where Birn(k) denotes k-birational equivalent class of smooth variety of dimension n. Each class
can be denoted by [L/k] with L = k(X).

Proposition 3.7 (Existence of SNC model). Let R be a complete dvr, let K be the fractional field
(i.e. the generic point of Spec(R)) and k the residue field (i.e. the special point of Spec(R)). Let
X/K be a geometric connected smooth proper variety defined over K, then there exists a regular
flat separated R-scheme of finite type X , endowed with an isomorphism of K-scheme XK → X
such that the special fiber Xk is a divisor with strict normal crossing. We call X /R is a SNC
model of X/K.

Proof. Let us first briefly sketch out the idea. We first reduce the problem to the projective case.

Remark 3.8. The SNC model also plays an important role in the

Definition 3.9 (Specialization map, [KT19, (3.2)]). Let o be a complete dvr, letK be the fractional
field (i.e. the generic point of Spec(o)) and k the residue field (i.e. the special point of Spec(o)).
We define

ρn : Birn(K) → Z [Birn(k)] ,

as follows: given a smooth projective family XK → Spec(K) (with the function field L := K(XK)),
choose one of family

π : X → Spec(o),

where π is proper, such that the generic fibers is XK and special fiber

X0 =
⋃
i∈I

diDi,

is a SNC divisor, with the strata DJ :=
⋂

j∈J Dj . We then define the specialization map to be

ρn([L/K]) :=
∑

∅≠J⊆I

(−1)#J−1
[
DJ × A#J−1/k

]

One of the main difficulties in the proof is verifying that the specialization map ρn : Birn(K) →
Z[Birn(k)] is well-defined (i.e., it does not depend on the choice of the family X → D) or represen-
tative X in Birn(X). We omit the proof of this part; for details, see [KT19, Theorem 4]).

Proof of Theorem 3.1. We first reduce the problem onto Spec of a complete dvr. Let π : X → B
be a smooth proper morphism to a smooth connected curve B over k with fiber X over the generic
point of B. Let K = k(B) be the function field of B. Let κb be the residue field at b, a finite
extension of k. Let Kb be the completion of K at b. Then Kb is a local field with residue field κb.
Let

ϕb : K → Kb,

be the canonical inclusion. By functoriality, it defines a homomorphism

ϕb,∗ : Burn(K) → Burn (Kb) .
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We then consider the specialization map over the complete dvr Kb. Note that we have the special-
ization homomorphism

ρ : Burn (Kb) → Burn (κb) ,

and the following identity
[Xb/κb] = ρ (ϕb,∗([X/K])) ,

which follows immediately from the Definition 3.9 of ρ, since the special fiber is smooth and irre-
ducible. This shows that the birational type of the special fiber is determined by the birational
type of the generic fiber.

4 Fiberwise Bimeromorphic Criterion using Plurigenera

In this section, we will give a criterion for fiberwise bimeromorphic map using plurigenera. For
readers who want to know more about this, please refer to [CRT25].

Lemma 4.1 ([GPR94, Theorem 1.19]). Let f : X → Y be a proper surjective holomorphic map,
assume that X is reduced and irreducible. Then the set

{y ∈ Y | dimxXy > dimX − dimY for some x ∈ Xy} .

is analytic in Y and of codimension at least 2.

Proposition 4.2 ([CRT25, Theorem 1.4]). Let X,Y and S be complex analytic spaces. Assume
that X is reduced (not necessarily normal) and irreducible, Y is normal, and S is a smooth curve.
Assume further that both π1 : X → S and π2 : Y → S are proper surjective holomorphic maps.
Suppose that there is a bimeromorphic morphism f : X → Y over S. For some t ∈ S, if Dt

is an irreducible component of Yt that is of codimension 1 in Y , then there exists an irreducible
component Ct (equipped with the reduced structure) of Xt that is bimeromorphic to Dt, induced
by f .

In particular, if the fibers of X → S and Y → S are irreducibles then f is fiberwise bimeromorphic
map.

Proof. Since X is reduced and irreducible, by lemma above, we have the set of points that dimXy =
0 is a big open subset in Y (with the complement an analytic subset V such that codimV (X) ≥ 2).
Since Y is normal, and f : X − f−1(V ) → Y − V is bijective. Thus f : X − f−1(V ) → Y − V is
biholomorphic. Additionally, f is surjective by the definition of a bimeromorphic morphism. Con-
sequently, there exists an irreducible component Ct of Xt such that f (Ct) = Dt by the irreducibility
of Dt.

In view of the codimensions of V and Dt, it follows that Dt ⊈ V , and consequently, Ct ⊈ f−1(V ).
Clearly, Dt ∩ V is a thin analytic subset of Dt, and Ct ∩ f−1(V ) is a thin analytic subset of Ct.
Hence, one can easily check by definition that f : Ct → Dt is bimeromorphic.

We next prove a simplify version of the fiberwise bimeromorphic cirterion using plurigenera, for a
much more general version, please refer to [CRT25].
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Theorem 4.3 ([CRT25, Theorem 1.6]). Let

π1 : X → S, π2 : Y → S

be two (locally) Moishezon morphism with irreducible fibers that admits canonical singularities,
such that κ(X0) ≥ 0. Then the bimeromorphic map that connects π1 and π2 is indeed fiberwise
bimeromorphic.

Let us briefly sketch out the idea. We first take the resolution of indeterminacy, by further resolution
we can guarantee the generic fibers of W → S being smooth.

W

X Y

S

p q

π1 π2

We claim that the strict transform X̃0 = p−1
∗ (X0) and the strict transform Ỹ0 = q−1

∗ (Y0) must
coincide. For otherwise, since plurigenera is bimeromorphic invariant we have Pm(X0) = Pm(X̃0),
Pm(Y0) = Pm(Ỹ0) and Pm(Wt) = Pm(Xt) = Pm(Yt). On the other hand, since the family W → S
is Moishezon, by the lower semi-continuity of the plurigenera (for Moishezon morphism), we have
Pm(X̃0) + Pm(Ỹ0) ≤ Pm(Wt). Since Y → S be a Moishezon morphism with fiberwise canonical
singularities, the plurigenera remain constant i.e. Pm(Yt) = Pm(Y0). Putting those together, we
have

Pm(X0) + Pm(Ỹ0) = Pm(X̃0) + Pm(Ỹ0) ≤ Pm(Wt) = Pm(Xt) = Pm(Yt) = Pm(Y0) = Pm(Ỹ0)

so that the plurigenera Pm(X0) = 0 which contradicts κ(X0) ≥ 0.

5 The Fiberwise Bimeromorphic Conjecture for Moishezon Mor-
phisms

In the last section, we will prove the following conjecture under the additional assumption that the
center fiber is KLT and not uniruled.

Conjecture 5.1 (Fiberwise bimeromorphic conjecture for Moishezon morphism, [Kol22, Conjec-
ture 5]). Let g : X → D be a flat, proper, Moishezon morphism. Assume that X0 has canonical
(resp. log terminal) singularities.

Then g is fiberwise birational to a flat, projective morphism gp : Xp → D such that

(1) Xp
0 has canonical (resp. log terminal) singularities,

(2) Xp
s has terminal singularities for s ̸= 0, and

(3) KXP is Q-Cartier.
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Remark 5.2. Before continuing our discussion of this conjecture, let us first look closely at what
this conjecture is about. The conjecture shows that the flat Moishezon morphism is not only
bimeromorphic to some projective model but it is indeed fiberwise bimeromorphic to some projective
model, as long as the singularity on the central fiber is nice enough.

Kollár verifies the conjecture when the central fiber is KLT and not uniruled. Before proving the
theorem, let us list some intermediate results that will be used.

Proposition 5.3 (Inversion of adjunction, [Kol22, Proposition 30]). Let X be a normal complex
analytic space, X0 ⊂ X a Cartier divisor, and ∆ an effective R-divisor such that KX + ∆ is
R-Cartier. Then (X,X0 +∆) is PLT in a neighborhood of X0 iff

(
X0, ∆|X0

)
is KLT.

Proposition 5.4 (Existence of canonical modification, [Kol22, Corollary 38]). Let f : X → D be
a flat, proper, Moishezon morphism. Assume that X0 is log terminal. Then X has a canonical
modification π : Xc → X, such that
(a) Xc

0 is log terminal and,
(b) π is fiberwise birational.

Proof. The proof uses some algebraic approximation technique, see [Kol22].

Lemma 5.5 ([Kol22, Lemma 31.1]). Let X → S be a proper, Moishezon morphism, D an R-divisor
on X, and A a big R-divisor on X such that Bdiv(A) = ∅. Then, for every prime divisor F ⊂ X,

coeffF Bdiv
− (D) = lim

ϵ→0
coeffF Bdiv

− (D + ϵA)

Lemma 5.6 ([Kol22, Lemma 31.2]). Let Xi → S be proper, Moishezon morphisms, h : X1 → X2

a proper, bimeromorphic morphism, D2 a pseudo-effective, R-Cartier divisor on X2, and E an
effective, h-exceptional divisor. Then

Bdiv
− (E + h∗D2) ≥ E.

The following proposition is useful in the proof.

Proposition 5.7. Let f : X → U be a proper morphism between complex varieties, (X,∆) a DLT
pair and ϕ : X 99K XM be a minimal model for KX + ∆ over U . Then the set of ϕ-exceptional
divisors coincides with the set of divisors contained in B− (KX +∆/U).

Proof. Let p : Y → X and q : Y → XM be a common resolution. Since ϕ is (KX +∆)-negative,
we have that p∗ (KX +∆) = q∗ (KXM

+ ϕ∗∆) + E where E is effective, q-exceptional and the
support of p∗E is the set of ϕ-exceptional divisors. Since the minimal model assumption, we have
Nσ (p

∗ (KX +∆) /U) = E. we get
p∗E = Nσ(KX +∆).

Lemma 5.8. Let b0 = 1, b1, . . . , bn be real numbers which are linearly independent over Q, and
suppose that the divisor

∑n
i=0 biBi is R-Cartier. Then each of the divisors Bi is Q-Cartier.

Having introduced a bunch of lemma will be used in the proof. We can now dive into the proof of
the last main theorem of this note.
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Theorem 5.9 (A flat Moishezon morphism with KLT and non-uniruled central fiber will be fiber-
wise bimeromorphic to a projective morphism, [Kol22], Theorem 28). Let g : X → D be a flat,
proper, Moishezon morphism. Assume that

1. X0 has log terminal singularities and

2. X0 is not uniruled

Then

(a) g is fiberwise birational to a flat, projective morphism gp : Xp → D (possibly over a smaller
disc),

(b) Xp
0 has log terminal singularities,

(c) Xp
s is not uniruled and has terminal singularities for s ̸= 0,

(d) KXp is Q-Cartier

Proof. We take a resolution of singularities Y → X such that Y → D is projective, and then take
a relative minimal model of Y → D. We hope that it gives what we want. There are, however,
several obstacles.

Step 1. Take the canonical modification. We need to control the singularities of X. First
for a flat proper Moishezon morphism with KLT central fiber, there exist a canonical modifiction
(Theorem 5.4) which is fiberwise birational and the central fiber is KLT. Thus we in the case that
KX is Q-Cartier.

Indeed by the canonical modificaiton we can find some canonical modification Xc → X such that
Xc is canonical singularity and the the morphism Xc → X is the fiberwise birational. Thus, if we
can prove the result for Xc → D then it will also be true for the X → D (since composition of
fiberwise birational map is again fiberwise birational).

We assume this from now on. Then the inversion of adjunction for PLT pair implies that the
pair (X,X0) is PLT. by setting ∆ = 0 in the inversion of adjunction. (To apply the inversion of
adjunction here we require KX to be Q-Cartier)

Step 2. Take the semi-stable reduction. After a base change z 7→ zr we get gr : Xr → D.
For suitable r, there is a semi-stable, projective resolution h : Y → D; we may also choose it to be
equivariant for the action of the cyclic group G ∼= Zr. All subsequent steps will be G-equivariant.
We denote by XY

0 the birational transform of X0 and by Ei the other irreducible components of
Y0.

Y Xr X

D D

Such that the following conditions hold:
(a) Y is non-singular,
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(b) generic fibers are non-singular,
(c) The special fiber is a reduced divisor with SNC support,
(d) Denote that Y0 = XY

0 +
∑

ciEi (with XY
0 be the strict transform on X0), note that the strict

transform XY
0 will dominant X0.

Step 3. Prove the generic fibers Ys are not uniruled (for s ̸= 0). We will prove it by
contradiction, if the generic fibers Ys are uniruled. Then, by Matsusaka’s theorem (see [Kol96,
Theorem VI.1.7]), all the irreducible components of Y0 are uniruled. On the other hand, since XY

0

dominant X0, X0 must be uniruled, a contradiction.

And finally by the BDPP theorem. easy to see KYs is pseudo-effective. (Since we assume that
generic fibers are smooth).

Step 4. Run the MMP. We require the condition that the general fibers are of log general type.
To achieve this, let H be an ample, G-equivariant divisor such that Y0 +H is snc (note that this is
possible by taking H ′ = ⊗n

m=1g ·H, since G is finite group this is well defined ample line bundle).
For ϵ > 0 we get a pair (Y, ϵH) whose general fibers (Ys, ϵHs) are of log general type since KYs is
pseudoeffective by previous step. For such algebraic families, relative minimal models are known
to exist by BCHM. We also know that (Y, Y0 + ϵH) is dlt for 0 < ϵ ≪ 1 (since Y is smooth and
Y0 +H is snc).

Thus we get the (KX + Y0 + ϵH)-relative MMP on the disc D, (Note that the base is an analytic
disc, thus the MMP is in the sense of Fujino [Fuj22] or Kollár-Nicaise-Xu [KNX18]).

(Y, ϵH) (Y m, ϵHm)

D

ϕ

We claim (Y m, Y m
0 + ϵHm) is DLT, and Hm is Q-Cartier for general choice of ϵ and also thus

(Y m, Y m
0 ) is also dlt.

Indeed, Step of MMP will preserve DLT condition (see [BCHM] Lemma 3.10.10.) easy to see
(Y m, Y m

0 + ϵHm) is DLT. On the other hand, by Lemma 5.8, easy to see if ϵ is sufficient general
the Q-linear independent condition satisfies and therefore Hm is indeed a Q-Cartier divisor. And
finally by [KM98, Corollary 2.39] the (Y m, Y m

0 ) is also DLT.

Recall that we have
Bdiv

− (KY + Y0) ≥ (1 + a(Ei, X
r, X0))Ei,

since the discrepancy of a PLT pair a(Ei, X
r, X0) > −1 thus all the exceptional divisors Ei contains

in the divisorial part of the restricted base locus Bdiv
− (KY + Y0). On the other hand

coeffF Bdiv
− (D) = lim

ϵ→0
coeffF Bdiv

− (D + ϵA),

for any prime divisor F . Thus, for sufficiently small ϵ, Ei also contains in the restricted base
locus of KY + Y0 + ϵH (since the coefficients of Ei in Bdiv

− (KY + Y0 + ϵH) is also positive if
coeffEiB

div
− (KY + Y0) > 0). Then, by Proposition 5.7, any MMP will contract those Ei.

Step 5. Prove fiberwise bimeromorphic. By the Cone theorem, those divisors contracted
will be covered by rational curves. However, we assume that XY

0 is not uniruled (thus, it is not

11
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contracted by the MMP). By Theorem 2.4 the generic fiber of X 99K Y m is bimeromorphic, so
one only needs to prove that the central fiber X0 is bimeromorphic to Y m

0 . In fact, since the only
component on Y m

0 is the strict transform of XY
0 , X0 is bimeromorphic to Y m

0 .

Step 6. Check the singularity assumptions. Note that the fibers Ys of the family h : Y → D
is smooth away from Y0 (by the semi-stable assumption) thus (Ys, ϵHs) is terminal for s ̸= 0 and
0 ≤ ϵ ≪ 1 (see [KM98, Corollary 2.35. (2)])

Since Hs is ample, by negativity lemma the MMP above will not contract Hs. Note that (Y
m
s , ϵHm

s )
is still terminal (by [KM98, Corollary 3.43]). Thus, Y m

s also admits the terminal singularity (see
[KM98, Corollary 2.35]). Since (Y m, Y m

0 ) is DLT, it’s also PLT thanks to the irreducible of Y m
0

([KM98, Proposition 5.51]). And therefore Y m
0 is KLT by the easy direction of inversion of adjunc-

tion (see Theorem 5.3).
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