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Note 3 — 2025-07-12 (draft version)

Yi Li

1 Overview

The aim of this note is to study the distribution of general type locus, Moishezon locus, and
projective locus (see Definition 2.1) on the irreducible base. The motivation of this topic comes
from the following observation on the distribution of polarized (projective) K3 surfaces in the
universal family of marked complex K3 surfaces.

Let X → D20 be a universal family of K3 surfaces. A smooth, compact surface is Moishezon iff it
is projective. The projective fibers of X → D20 correspond to a countable union of hypersurfaces
H2g ⊂ D20. As we can see from this example, the projective locus (which corresponds to projective
K3 surfaces) is a countable union of the hypersurface in the moduli space D20.

It is natural to ask how the locus of fibers that admits certain properties is distributed on the
base. This note focuses on the distribution of the fibers that are projective, of general type and
Moishezon on the base S. The major references of this note are [Kol22a], [RT22] and [Kol22b].
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2 The alternating property of the very big locus, general type
locus

We first give the definitions for the very big locus, Moishezon locus, general type locus, and the
projective locus.

Definition 2.1 (Very big locus, general type locus, Moishezon locus, [Kol22a, Definition 18]).
Let g : X → S be a proper morphism of normal analytic spaces and L a line bundle on X. Set

1. VBS(L) := {s ∈ S : Ls is very big on Xs} ⊂ S,
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2. GTS(X) := {s ∈ S : Xs is of general type } ⊂ S,

3. MOS(X) := {s ∈ S : Xs is Moishezon } ⊂ S,

4. PRS(X) := {s ∈ S : Xs is projective } ⊂ S.

Here very big means the place s ∈ S that Xs 99K ProjS(g∗Ls) is bimeromorphic onto its closure of
the image.

Definition 2.2 (Locus V that satisfies the alternating property over S). Let g : X → S be a
proper morphism of normal analytic spaces, we say the locus

V := {s ∈ S | Xs admits property P},

satisfies the alternating property over S if V ⊂ S is

(1) either nowhere dense (in the analytic Zariski topology),
(2) or it contains a dense open subset of S.

Remark 2.3. In general: (a) A subset which is not nowhere dense does not need to contain an
open subset of S. e.g. Q ⊂ R is not nowhere dense but it clearly contains no dense open subset of
R. (b) A subset that is not nowhere dense does not need to contain a dense subset of S as well,
e.g. the disc D = {|z| < 1} ⊂ C is not nowhere dense, but it is also not dense in C.

In the analytic Zariski topology. If S is irreducible, and V ⊂ S is not nowhere dense, then V is
dense in S. To see this, by definition, V̄ contains a non-empty Zariski open subset of S. Since S is
irreducible, all the non-empty Zariski open subset is dense and therefore V̄ = S.

Note that the property that V ⊂ S satisfies the alternating property over S does not care about
the information on the special fibers. In other words, we have the following lemma.

Lemma 2.4. Assume that S is irreducible, if V satisfies the alternating property on some non-
empty Zariski open subset S′ ⊂ S, then V also satisfies the alternating property on S.

Proof. Since S is irreducible, the non-empty Zariski open subset S′ ⊂ S is Zariski dense in S. Then
we have two cases:

Case 1. If V is nowhere dense in S′, then V is also nowhere dense in S. By contradiction, if there
exists some non-empty Zariski open subset W (of S) contained in V . Since S is irreducible, the
intersection W ∩ S′ is a non-empty Zariski open subset of S′. And therefore it contradicts to the
nonwhere dense of V in S′.

Case 2. If V is dense in S′ and we know that S′ ⊂ S is Zariski dense, then V is also dense in S.

Note that local system on irreducible complex variety is trivial.

Lemma 2.5. Local systems on an irreducible algebraic variety with the Zariski topology are trivial.
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Proof. Since X is irreducible iff any non-empty intersection of the Zariski open subsets is non-
empty. And by definition, for any point x ∈ X, there exists an open subset that the local system
is constant

L |Ui = Si,

. And any such Ui ∩ Uj ̸= ∅ so that

L|Ui∩Uj = Si|Ui∩Uj = Sj |Ui∩Uj ,

so that L is constant on Ui ∪ Uj . By quasi-compactness, we know that the local system is auto-
matically constant.

We first show that the very big locus satisfies the alternating property.

Proposition 2.6. Let f : X 99K Y/S be a proper morphism, between complex analytic varieties.
Assume that the restriction on each fiber fs : XS 99K Ys are bimeromorphic, can we prove that
f : X → Y/S is bimeromorphic S-map?

Theorem 2.7 (Alternating property of very big locus, [Kol22a, Lemma 19]).
Let g : X → S be a proper morphism of normal irreducible analytic spaces and L a line bundle on
X. Then VBS(L) ⊂ S is

(1) either nowhere dense (in the analytic Zariski topology),
(2) or it contains a dense open subset of S, and g : X → S is Moishezon.

Proof. We may assume that g : X → S is surjective (otherwise by properness of g, it will imme-
diately in (1)). By Lemma 2.4, it is possible to pass to a non-empty Zariski open subset of S.
Thus, we may assume that g is flat, g∗L is locally free and commutes with restriction to the fibers.
We get a meromorphic map ϕ : X 99K PS (g∗L). There is thus a smooth, bimeromorphic model
π : X ′ → X such that ϕ ◦ π : X ′ → PS (g∗L) is a morphism. After replacing X by X ′ and again
passing to an open subset of S, we may assume that g is flat, g∗L is locally free, commutes with
restriction to fibers, and ϕ : X → PS (g∗L) is a morphism.

Let Y ⊂ PS (g∗L) denote its image and W ⊂ X the Zariski closed set of points where π : X → Y is
not smooth. Set Y ◦ := Y \ϕ(W ) and X◦ := X\ϕ−1(ϕ(W )). The restriction ϕ◦ : X◦ → Y ◦ is then
smooth and proper. We divide the discussion into two cases:

Case 1. If we assume that the set of points

E = {y ∈ Y | ϕ−1(y) is single points} ⊂ Y,

is not dense in Y . We claim in this case the VBS(L) is nowhere dense in S. For otherwise, it
will imply that VSS(L) is dense in S. And, so that for dense set of fibers {Xs}s∈VBS(L) ⊂ X,
the restriction of the relative Kodaira map are bimeromorphic onto its image. In particular, the
Es = E ∩Xs ⊂ Xs is dense in Xs. We claim that this will imply that

E =
⋃
s∈S

Es,

is dense in Y which will give the contradiction. This is because⋃
s∈VBS(L)

Ys =
⋃

s∈VBS(L)

clXs(Es) ⊂
⋃

s∈VBS(L)

clX(Es) ⊂ clX(
⋃

s∈VBS(L)

Es)
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Case 2. E is dense set in Y , thus it’s also for a dense set in Y ◦. Since ϕo is proper and smooth, ϕo

is a finite étale morphism of degree 1, thus it is an isomorphism.

Thus, ϕ is bimeromorphic on every irreducible fiber that has a non-empty intersection with X◦.
That is, if we denote D := {s ∈ S | Xs ∩Xo ̸= ∅}

⋂
{s ∈ S | Xs is irreducible} with g(Xo) = {s ∈

S | Xs ∩Xo ̸= ∅}, then
D ⊂ VBS(L),

(1) Note that irreducible of the fiber Xs is needed, if Xs ∩ Xo ̸= ∅ and Xs is irreducible, then
Xo ∩ Xs ⊂ Xs is an non-empty Zariski open subset of Xs, which is dense on the fiber Xs. Note
again since both X and S are irreducible, the generic fibers of g are irreducible, see [GW20, Exercise
6.15]. Thus adding this constraint will not change the result),
(2) Note that the very big locus is not directly defined by the restriction of X → PS(g∗L) on the
fibers. Instead, it’s defined by the Kodaira map Xs → P(H0(Xs, Ls). Since we assume that g∗L
commutes with restriction on the fiber, these two Kodaira maps coincide.

Recall that a morphism between analytic varieties will send a dense subset to a dense subset in
its image. And g is flat (by assumption at the beginning), so that g is open. Thus g will send a
Zariski dense open subset to a Zariski dense open subset. Thus D is a non-empty dense Zariski
open subset contained in the VBS(L).

Finally, we need to show that in this case g : X → S is a Moishezon morphism, i.e. the relative
Kodaira map over S induced by L is bimeromorphic onto its image. Since ϕo : Xo → Y o is an
isomorphism for Xo ⊂ X an non-empty dense open subset, the result follows.

As a direct consequence (combined with birational boundedness result of Hacon-Mckernan [HM06])
we see the general type locus also admits the alternating property.

Theorem 2.8 (The alternating property of the general type locus, [Kol22a, Corollary 20]).
Let g : X → S be a proper morphism of normal, irreducible analytic spaces. Then the general type
locus

GTS(X) = {s ∈ S | Xs is of general type},

(1) either nowhere dense (in the analytic Zariski topology),
(2) or it contains a dense open subset of S, and g : X → S is Moishezon

Proof. Using resolution of singularities, we may assume that X is smooth. By passing to an open
subset of S, we may also assume that S and g are smooth. By [HM06] there is an m (depending
only on dimXs) such that |mKXs | is very big whenever Xs is of general type. Thus, Theorem 2.7
applies to L = mKX .

3 The alternating property of the Moishezon locus

In this section, we will prove that the Moishezon locus also admits certain alternating property.
Before proving Theorem 3.6. Let us first introduce the following result, by [RT22].

Definition 3.1. Let X be a complex manifold, ∆ ⊆ C the unit disk and f : X → ∆ a flat family,
smooth over the punctured disk ∆∗. We say that f is a one-parameter degeneration.
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Theorem 3.2 (Moishezon morphism criterion, [RT22, Proposition 3.15]). Let π : X → ∆ be a
smooth morphism.
(1) Assume that there exists an uncountable subset B of ∆ such that for each t ∈ B, the fiber Xt

admits a line bundle Lt with the property that c1 (Lt) comes from the restriction to Xt of some
cohomology class in H2(X ,Z).
(2) Assume further that the Hodge number h0,2 (Xt) := h2 (Xt,OXt) is independent of t ∈ ∆ (the
original theorem requires only Hodge (0,1) deformation invariance).

Then there exists a global line bundle L over X such that c1(L|Xs) = c1(Ls) for any s in some
uncountable subset of B.

Proof. Apply the sheaf exponential exact sequence so that

0 → Z → OX → O∗
X → 0.

We claim that
H2(X ,OX ) ∼= H0(∆, R2π∗OX), H

2(Xs,OXs)
∼= R2π∗OX (s).

Indeed:

(1) By Cartan B. we have
Hp(S,Rqπ∗OX) = 0, p > 0, q ≥ 0,

and the Leray spectral sequence argument implies the first one,
(2) Since we assume the cohomological dimension h0,2 is constant, by Grauert base change theorem,
the second one follows.

Thus, we have the following commutative diagram.

H0(X , R2π∗OX )

H1(X ,O∗
X ) H2(X ,Z) H2(X ,OX )

H1(Xs,O∗
Xs

) H2(Xs,Z) H2(Xs,OXs)

R2π∗OX (s)

∼=

e2

e2

∼=

Where we have the evaluation evs : H
0(X , R2π∗OX ) → R2π∗OX (s) in the diagram above.

Let Ls ∈ Pic(Xs) such that c1(Ls) ∈ H2(Xs,Z). By simply connectedness of ∆, c1(Ls) ∈ H2(Xs,Z)
will lift to c ∈ H2(X ,Z). If we can prove the vanishing of e2(c) ∈ H2(X ,OX ) then by the exactness
of the sequence we can find some global line bundle L ∈ Pic(X ).

Observe that the cohomology group H2(Xs,Z) ∼= H2(X ,Z) is Z coefficient, so that it has only
countable many elements. Given uncountable many Lt, it must have some c ∈ H2(X ,Z) such that
uncountable subset of t satisfies c1(Lt) = c.
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Since this c ∈ H2(Xs,Z) comes from Ls ∈ Pic(Xs), we have e2(c) = 0 ∈ R2π∗OX (s) and thus if we
lift it to c ∈ H2(X ,Z) the global section e2(c) ∈ H0(X , R2π∗OX ) will vanish on uncountable many
points. Thus by the identity principle (since R2π∗OX is locally free (this step is not due to torsion
freenss, we need Hodge number condition to get torsion freeness) the vanishing locus of e2(c) is
a subvariety), we have e2(c) = 0 ∈ H2(X , R2π∗OX ). Therefore, there exists a global line bundle
L ∈ Pic(X ) with the restriction c1(L|Xs) = c1(Ls). Finally, by the Proposition 3.3 deformation
density of Iitaka-Kodaira dimension, we conclude that L is indeed a global big line bundle.

The following proposition is used in the proof of Theorem 3.1.

Proposition 3.3 (Deformation density of Iitaka-Kodaira dimension, [LS77, Theorem 3.4]). Let
π : X → Y be a flat family from a complex manifold over a one-dimensional connected complex
manifold Y with possibly reducible fibers. If there exists a holomorphic line bundle L on X such
that the Kodaira-Iitaka dimension κ (Lt) = κ for each t in an uncountable set B of Y , then any
fiber Xt in π has at least one irreducible component Ct with κ

(
L|Ct

)
≥ κ.

In particular, if any fiber Xt for t ∈ Y is irreducible, then κ (Lt) ≥ κ.

We next add some supplementary materials about the sheaf exponential sequence and relative
Picard functor.

Lemma 3.4 ([Har77, p. 466]). Let X be a reduced complex analytic space, then the following
sheaf exponential sequence is exact.

0 → Z → OX → O∗
X → 0.

The following proposition relative the relative Picard functor

Proposition 3.5 (Picard-Brauer exact sequence). Let X → T be a proper surjective morphism
between complex varieties.

0 → H1
(
T, fT∗O∗

XT

)
→ H1

(
XT ,O∗

XT

)
→ H0

(
T,R1fT∗O∗

XT

)
→H2

(
T, fT∗O∗

XT

)
→ H2

(
XT ,O∗

XT

)
,

we callH2(T, fT ∗O∗
XT

) = H2(T,O∗
T ) the Brauer group. Note that a global sectionH

0(T,R1(fT )∗O∗
XT

)

that comes from H0(XT , R
2(fT )∗Z) will automatically vanishing in the Brauer group since we have

the factorization H2(T,O∗
XT

) as

H0(T,R1(fT )∗O∗
XT

) → H0(T,R2(fT )∗ZXT
) → H0(T,R2(f∗)).

If OS
∼−→ f∗OX holds universally, then H1 (T,O∗

T )
∼−→ H1

(
T, fT∗O∗

XT

)
. Hence we have the following

Picard-Brauer exact sequence,

0 → Pic(T ) → Pic (XT ) → Pic(X/S)(zar)(T ).

We now turn to the proof of the alternating property of the Moishezon locus.
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Theorem 3.6 ([Kol22a, Theorem 21]). Let g : X → S be a smooth, proper morphism of normal,
irreducible analytic spaces. Then MOS(X) ⊂ S is

(1) either contained in a countable union ∪iZi, where Zi ⊊ S are Zariski closed,
(2) or MOS(X) contains a dense, open subset of S.

Furthermore, if R2g∗OX is torsion free then (2) can be replaced by
(3) MOS(X) = S and g is locally Moishezon.

Remark 3.7. The condition (1) is slightly different from the nowhere dense condition compared
with Lemma 2.7 and Theorem 2.8. Indeed the countable union of nowhere dense subset needs not
to be nowhere dense (e.g. Q as countable union of nowhere dense subset is no longer nowhere
dense). As we will see in the proof, this replacement is necessary. Another difference compared
with Lemma 2.7 and Proposition 2.8 is here we assume the morphism is smooth.

Remark 3.8. Compared with the proof of [RT22], Kollár’s proof does not require the base to be
the unit disc ∆. Consequently, the direct image R2g∗OX is only torsion free, which does not need
to be locally free.

Proof. Assume first that R2g∗OX is torsion free. The sheaf exponential sequence

0 → ZX → OX
exp−−−→ O∗

X → 1.

gives
R1g∗O∗

X → R2g∗ZX
e2−→ R2g∗OX .

We may pass to the universal cover of S. Note that the local system on the simply connected space
is constant, thus R2g∗ZX ⊗OS is a trivial bundle.

Let {ℓi} be those global sections of R2g∗ZX such that e2 (ℓi) ∈ H0(S, R2g∗OX

)
is identically 0,

and
{
ℓ′j

}
the other global sections (those {ℓi, ℓ′i} are countable since we consider the Z-coefficient

local system). The ℓi then lift back to the global sections of R1g∗O∗
X . Hence to line bundles Li on

X. We then divide the problem into two cases:

Case 1. If there is an Li such that VBS (Li) contains a dense open subset of S, then X → S is
Moishezon (by Proposition 2.7) and we are done.

Case 2. If any such line bundle Li has nowhere dense very big locus VBS(Li). We claim

MOS(X) ⊂ ∪iVBS (Li)
⋃

∪j
(
e2

(
ℓ′j
)
= 0

)
.

If s ∈ MOS(X), and s /∈ ∪j
(
e2

(
ℓ′j

)
= 0

)
. We claim in this case every line bundle on Xs is

numerically equivalent to some Li|Xs
. For otherwise, there exist a line bundle Ls on Xs, with c1(Ls)

lift to some ℓ′j . Since the diagram below commute, which means that evs(e2(ℓ
′
j)) = e2(c1(Ls)) = 0

must vanish, contradict to the s /∈
(
e2

(
ℓ′j

)
= 0

)
.

H0(S,R2g∗Z) = H2(S,Z) H0(X,R2g∗OX)

H2(Xs,Z) R2g∗OX(s) ≃ H0(Xs,OXs)

e2

≃ evs

e2
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(Note that the isomorphism H2(Xs,Os) ≃ R2g∗OX(s) at the point s ∈ MOS(X) since locally free
of R2g∗OX in neighborhood of s ∈ S using Proposition 3.9 and the Hodge decomposition we proved
in the first time).

Thus Xs has a big line bundle (as s ∈ MOS(X)) ⇔ Li|Xs
is big for some i⇔ Li|Xs

is very big for
some i (and therefore s ∈ ∪iVBS(Li)). This completes the case when R2g∗OX is torsion free.

We next show that fiberwise Moishezon morphism is locally Moishezon if the morphism is smooth.
Before proving the result, let us give a locally free criterion of direct image when the fibers satisfy
the Du Bois property.

Theorem 3.9 (Locally freeness criterion for Rif∗OX , [Kol22a, Theorem 24]). Let f : X → S be a
smooth, proper morphism of analytic spaces. Assume that H i (Xs,C) → H i (Xs,OXs) is surjective
for every i for some s ∈ S. Then Rig∗OX is locally free in a neighborhood of s for every i.

Proof. We begin our proof by noticing by the direct image theorem it’s enough to show the surjec-
tivity of the base change morphism

ϕis : R
if∗OX(s) → H i (Xs,OXs) ,

for every i. Indeed the base change theorem shows that the surjectivity of the base change mor-
phisms ϕis and ϕi−1

s implies the locally freeness of the direct image Rif∗(OX) (see Hartshorne
Corollary 12.9).

Next by the Theorem on Formal Functions, it is enough to prove this when S is replaced by any
Artinian local scheme Sn, whose closed point is s.

By Cartan B easy to see the vanishing of Hp(Sn, R
if∗OX) = 0, ∀q,∀i > 0 then by the Leray

spectral sequence argument we get

H0
(
Sn, R

if∗OX

)
= H i (Xn,OXn) , for i ≥ 0.

On the local Artinian base with the closed point s, we have the following equality

Rif∗OX(s) = H0(Sn, R
if∗OX) = H i(Xn,OXn).

The base change morphism thus becomes

ψi : H i (Xn,OXn) → H i (Xs,OXs) .

Let CXn (resp. CXs) denote the sheaf of locally constant functions on Xn (resp. Xs) and jn :
CXn → OXn (resp. js : CXs → OXs) the natural inclusions. We have a commutative diagram

H i(Xn,CXn) H i(Xs,CXs)

H i(Xn,OXn) H i(Xs,OXs)

αj

j′n j′s

ψj

Note that αi is an isomorphism since the inclusion Xs ↪→ Xn is a homeomorphism, and jis is
surjective by assumption. Thus ψi is also surjective.
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Using this we can prove that the smooth fiberwise Moishezon morphism is locally Moishezon mor-
phism.

Theorem 3.10 (Fiberwise Moishezon smooth morphism is locally Moishezon , [Kol22a, Corollary
22]). Let g : X → S be a smooth, proper morphism of normal and irreducible analytic spaces
whose fibers are Moishezon. Then g is locally Moishezon.

Proof. Since we proved (in the first time) the Moishezon manifolds admit strong Hodge decompo-
sition, thus

H i (Xs,C) → H i (Xs,OXs) ,

is surjective for every i ≥ 0. The result then follows directly by Theorem 3.9.

4 The alternating property of the projective locus

In the last section, we will finish the proof of the alternating property about the projective locus.
The following Thom Whitney stratification theorem is useful in the proof.

Proposition 4.1 (Thom Whitney stratification theorem, [Kol22b, Lemma 15]). Let f : X → S
be a proper morphism of complex analytic spaces. There exist finite Whitney stratifications X of
X and S = {Sl}l≤d of S by locally closed subsets Sl of dimension l, with d = dimS, such that for
each connected component S (a stratum) of Sl. The following condition holds.

(a) f−1S is a topological fibre bundle over S, union of connected components of strata of X , each
mapped submersively to S,

(b) For all v ∈ S, there exist an open neighborhood U(v) in S and a stratum preserving homeo-
morphism h : f−1(U) ≃ f−1(v)× U s.t. f|U = pU ◦ h where pU is the projection on U .

In particular, there is a dense, Zariski open subset S◦ ⊂ S such that g◦ : X◦ → S◦ is a topologically
locally trivial fiber bundle. Moreover, If S = ∆, if we shrink the disc then f : X∗ → ∆∗ is
topologically fiber bundle.

Under this assumption, we can prove the local system Rig∗ZX is constructible in the analytic
Zariski topology for a proper morphism between complex analytic spaces.

Corollary 4.2 ([Kol22b, Corollary 16]). Let g : X → S be a proper morphism of complex analytic
spaces. Then the sheaves Rig∗ZX are constructible in the analytic Zariski topology.

When consider the global section of a local system, the following result is helpful.

Lemma 4.3. Let L be a local system on a complex manifold S, the global section

H0(S,L ) = Lρ := {a ∈ L| ρ(α)(a) = a,∀α ∈ π1(S, v)} ,

where L is the fiber of the local system on the reference point v ∈ S. And ρ : π1(S, v) → GL(L) be
the monodromy action. In particular if the base S is simply connected, then H0(S,L ) = L.
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Proposition 4.4 (The alternating property of projective locus, [Kol22b, Proposition 17]). Let
g : X → S be a proper morphism of normal, irreducible analytic spaces. Then there is a dense,
Zariski open subset S◦ ⊂ S such that
(1) either X is locally projective over S◦,
(2) or PRS(X) ∩ S◦ is locally contained in a countable union of Zariski closed, nowhere dense
subsets.

If g is bimeromorphic to projective morphism, then X is projective over So.

Remark 4.5. The locally projective condition is necessary in some situations (that is g : X → S
may not be projective over So). Question to be done: where do we use the ”locally” in the proof?
Euclidean topology or Zariski topology?

Proof. If we restrict our attention to the main strata So of the Whitney stratification, the direct
image R2g∗ZX is locally constant. And further restricting on some Zariski open subset, we can also
assume that R2g∗OX is locally free. By passing to the universal cover, we may also assume that
R2g∗ZX is a constant sheaf. Now consider the sheaf exponential sequence

R1g∗O∗
X → R2g∗ZX

∂→ R2g∗OX .

Let Θ be a global section ofR2g∗ZX . By Lemma 4.3, we know that Θ ∈ H2(X,Z) = H0(S,R2g∗ZX).
We decompose the cohomology into two disjoint parts,

H2(X,Z) = V1 ⊔ V2,

where
V1 = {Θ ∈ H2(X,Z) | ∂Θ ≡ 0}, V2 = {Θ ∈ H2(X,Z) | ∂Θ ̸≡ 0}.

Since we assume that R2g∗OX is a vector bundle, the vanishing locus is a Zariski closed nowhere
dense subset we denote HΘ = V (Θ) for Θ ∈ V2.

Case 1. Given a point s ∈ PRS(X), there exists some ample line bundle Ls on Xs, and thus under
the exact sequence

Pic(Xs) → H2(Xs,Z)
∂→ H2(Xs,OXs),

c1(Ls) = ΘLs maps to some zero element ∂(ΘLs) = 0. Since

ress : H
2(X,Z)

≃→ H2(Xs,Z),

one can lift the class ΘLs ∈ H2(Xs,Z) to a class Θ ∈ H2(X,Z).

If ∂Θ is identically zero, then it lifts to a line bundle L ∈ Pic(X), such that L|Xs = Ls, which is
ample and therefore by Grothendieck’s ampleness theorem. We know that the morphism is locally
projective around s ∈ PRS(X).

Case 2. Assume that for all points s ∈ PRS(X), all ∂Θ is not identically zero, then ∂Θ = 0 defines
a Zariski closed, nowhere dense subset HΘ ⊂ S. In this case, we know that

Θ ∈ V2,

and by the commutative diagram,
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we know that s ∈ V (Θ). And thus

PRS(X) ⊂ ∪Θ∈V2V (Θ).
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