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Projectivity Criterira and Projective Stratification Summer 2025

Note 4 — 2025-07-16 (draft version)

Yi Li

1 Overview

The aim of this note is twofold.

(1) We summarize several projectivity criteria for Moishezon varieties. These include the singu-
lar version of Kodaira’s projectivity criterion, the Nakai–Moishezon criterion, Seshadri’s criterion,
Kleiman’s ampleness criterion, and a projectivity criterion for Moishezon morphisms as developed
in [CH24].

(2) We discuss the projective stratification theorem. The ultimate goal is to complete the proof of
the following result.

Theorem 1.1 ([Kol22, Theorem 2]). Let g : X → S be a proper Moishezon morphism of complex
analytic spaces and S∗ ⊂ S a dense, Zariski open subset such that g is flat over S∗. Assume that
X0 is projective for some 0 ∈ S, and the fibers Xs have rational singularities for s ∈ S∗.

Then there is a Zariski open neighborhood 0 ∈ U ⊂ S and a locally closed, Zariski stratification
U ∩ S∗ = ∪iSi such that each g|Xi

: Xi := g−1 (Si) → Si is projective.
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2 Projectivity critera

In this section, we summarize some projectivity criteria related to Moishezon varieties.

2.1 Kodaira’s projectivity criterion

Proposition 2.1. LetX be a compact Kähler variety with rational singularities such thatH2 (X,OX) =
0, then X is projective.

Proof. Take the resolution ν : X ′ → X, where X ′ is a Kähler manifold. Since X has rational
singularity, Riν∗OX′ = 0 for i > 0. Thus, by the Leray spectral sequence argument, H2(X,OX) =
H2(X ′,OX′) = 0 and therefore by Kodaira’s projectivity criterion for smooth manifolds, X ′ is
projective. And therefore X is a Kähler Moishezon variety with rational singularity. By the result
we proved in the first time, X is a projective variety.

2.2 Nakai-Moishezon ampleness critera

Proposition 2.2 ([Kol90, Theorem 3.11]). Let X be a proper Moishezon space over C and let H
be a line bundle on X. Then H is ample on X if an only if for every irreducible closed subspace
Z ⊂ X, the intersection product Hdim(Z) · Z is positive.

2.3 Seshadri criterion line bundle version

Seshadri constant was first introduced by Demailly in the early 90s, when he studied Fujita’s
conjecture.

Conjecture 2.3. Let X be a smooth projective variety of dimension n, with L being ample. Then

(a) KX + (n+ 1)L is global generated,

(b) KX + (n+ 2)L is very ample.

Definition 2.4. Given a proper analytic space X and a line bundle L, the Seshari constant is
defined to be

ϵ(L, x) := inf
C∋x

L · C
multxC

.

He tried to reduce Fujita’s conjecture to the bound control of the Seshadri constant.

Theorem 2.5 ([Dem92]). Let X be a smooth projective variety of dimension n with L being
ample. Then the following hold.
(a) If ϵ(L, x) > n

n+1 then KX + (n+ 1)L is global generated,

(b) If ϵ(L, x) > 2n
n+2 then KX + (n+ 2)L is very ample.

For the readers who want to know more about this, please refer to [Dem92].
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2.4 Seshadri criterion cohomology class version 3

Proposition 2.6 ([Kol22]). Let X be a proper Moishezon space, and D a divisor on X (the same
also true for Q, R dvisor). Then D is ample if and only if there exists a positive number ε > 0
such that

(D · C)

mult xC
≥ ε,

for every point x ∈ X and every irreducible curve C ⊆ X passing through x.

2.4 Seshadri criterion cohomology class version

Lemma 2.7. Let X be a normal compact Moishezon variety. Then the canonical map

Φ : N1(X) → N1(X)∨, [D] 7→ λD

is an isomorphism. Here we define

λD : N1(X) → R, [T ] 7→ T ·D.

Remark 2.8. For Fujiki varieties with rational singularity the result is also true:

Let X be a normal compact Fujiki variety with rational singularity. Then the canonical map

Φ : N1(X) → N1(X)∨, ω 7→ λω

is an isomorphism. Here we define

λω : N1(X) → R, [T ] 7→ T (ω).

Here
N1(X) := H1,1

BC(X),

and N1(X) to be the vector space of real closed currents of bidimension (1, 1) modulo the following
equivalence relation: T1 ≡ T2 if and only if

T1(η) = T2(η),

for all real closed (1, 1)-forms η with local potentials.

Proposition 2.9 ([Kol22]). Let X be a proper Moishezon space over C with rational singularities.
Then X is projective iff there is a cohomology class Θ ∈ H2(X,Q) and an ϵ > 0 such that

Θ ∩ [C] ≥ ϵ ·multpC

for every integral curve C ⊂ X and every p ∈ C.

Proof. Note that the cup product induce a Q-bilinear form

(−) ∩ (−) : H2(X,Q)×H2(X,Q) → Q,

which will induce a Q-linear functional on H2(X,Q). If C 7→ [C] gives an injection N1(X,Q) ↪→
H2(X,Q), then we can view C 7→ Θ ∩ [C] as a Q-linear map

Θ ∩ (−) : N1(X,Q) → Q.
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2.5 Klieman’s ampleness criterion for Moishezon spaces 4

By the previous lemma, Θ ∩ (−) lies in the dual space N1(X,Q). And line bundles span the dual
space of N1(X,Q). So there is a line bundle L on X and an m > 0 such that deg (L|C) = m ·Θ∩ [C]
for every integral curve C ⊂ X. Thus

deg (L|C) = m ·Θ ∩ [C] ≥ mϵ ·multpC,

for every integral curve C ⊂ X and every p ∈ C. Then L is ample by the line bundle version
Seshadri criterion. Therefore X is projective.

Note C 7→ [C] gives an injection N1(X,Q) ↪→ H2(X(C),Q) if X has 1-rational singularities has
been discussed in the first note.

2.5 Klieman’s ampleness criterion for Moishezon spaces

Proposition 2.10 ([VP21]). Suppose that Y is a Moishezon space with Q-factorial, log terminal
singularities and that L is a Cartier divisor on Y . Then L is ample if and only if L has positive
degree on every irreducible curve on Y and L induces a strictly positive function on NE(Y ).

Remark 2.11. It remains open if the result is still true without the Q-factorial KLT assumption.

Proof. The proof require the study of rational curves on Moishezon spaces, we will prove it in the
next note.

3 Approximation of the Chow-Barlet 1-cycle space

In this section, we will introduce the main technical tool: Chow-Barlet cycle space. We will proved
that one can approximate the Chow-Barlet 1-cycle space using countable many families of marked
curves, which is crucial for the proof of result Theorem 6.1.

Definition 3.1 (Chow functor with m-marked points, [Kol96, Definition I.3.20]). Let X be an
analytic space over S. Let

Chowm(X/S)(Z) =


Well defined families of nonnegative,
proper, algebraic cycles C of X ×S Z/Z,
s1, . . . , sm : Z → X, si(z) ∈ Cz for all z ∈ Z

 .

We call the data in the bracket the Chow data with m-marked points. We say C is a pointed curve
if it is a 1-cycle that has one marked point. And we denote the Barlet-Chow 1-cycle space with
1-marked point Chow1

1(X/S).

Lemma 3.2 (Representative of the Chow functor with marked points). Let X → S be a proper
morphism between complex analytic spaces. The relative Chow functor with m-marked points is
representable by a complex analytic space Chowm(X/S).

Proof. Since the proof does not appear in the standard references, for the completeness we add a
proof here. We claim that Chow functor with marked points is actually represented by a closed
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subspace of the original Chow-Barlet cycle space (we call this closed subspace incident complex
subspace). Let

U → Chow(X/S),

be the universal family of the Barlet-Chow cycle space (with U ⊂ X ×S Chow(X/S) as closed
complex subspace). We then define the m-fold fiber product to be X(m) = X ×S X ×S ...×S X︸ ︷︷ ︸

m-times

.

Let P = Chow(X/S)×S X(m), the incident complex subspace is defined to be

Chowm(X/S) = I = {(s, x1, ..., xm) ∈ P | xi ∈ Us, for all i}.

We claim that I ⊂ P is a closed complex subspace. Indeed, we have the natural projective

pi : P → Chow(X/S)×S X, (c, x1, ..., xm) 7→ (c, xi),

and easy to check that the incidence variety can be represented as

I =

m⋂
i=1

p−1
i (U),

since U is closed complex subspace in X ×S Chow(X/S), and therefore as a finite intersection I is
a closed complex subspace in P .

We then show that I is the representative of the Chow functor with marked points that is

HomS(T, I) ≃ Chowm(X/S)(T ).

To see this, we first show that given a S-morphism T → I/S it will induce a Chow data with
marked points over S. Indeed, since I ⊂ Chow(X/S)×S X(m), so that the first projection

π1 : T → I → Chow(X/S),

will induce a family over T via pull back. And the second projection

σi = π2,i : T → I
qi→ X,

will defines the section we want. Conversely, given the Chow data (Z, σ1, ..., σm) with marked
point, it will induce a morphism. To see this, by the representative of the standard Chow functor,
we know that there exists a morphism ϕZ : T → Chow(X/S) such that Z → T is the pull back
family, with m-sections σi : T → X(m). It is easy to check that the induced morphism actually
maps into I,

ϕZ × σi : T → I ⊂ P.

The following upper semi-continuity result is needed in the proof.

Lemma 3.3 (upper semi-continuity of the multiplicities, [BM19, Proposition 4.3.10]). Let (Xs)s∈S
be an analytic family of n-cycles of a complex space M . Then the function

S ×M −→ N, (s, z) 7→ multz (Xs)

is upper semicontinuous in the Zariski topology of S ×M .
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Proof. The proof of the lemma is a bit complicated and we omit it here.

Remark 3.4. In particular, let f : X → S be a proper flat morphism of relative dimension 1,
assume that there is a holomorphic section σ : S → X. Then the multiplicity

mult : S → Z, s 7→ multσ(s)Xs

is Zariski upper-semicontinuous.

Proof. Since the fibers {Xs} clearly forms an anlytic family of cycles in X. Since the section map
σ : S → X is holomorphic,

S → S ×X → N, s 7→ (s, σ(s)) 7→ multσ(s)Xs,

is upper semi-continuous.

Theorem 3.5 (Approximation Chow-Barlet 1-cycle space, [Kol22]). Let g : X → S be a proper
morphism of complex analytic spaces that is bimeromorphic to a projective morphism. Fix m ∈ N.
Then there are countably many diagrams of complex analytic spaces over S,

Ci Wi ×S X

Wi

wi σi

indexed by i ∈ I, such that

(1) the wi : Ci → Wi are proper, of pure relative dimension 1 and flat over a dense, Zariski open
subset W ◦

i ⊂ Wi,

(2) the fiber of wi over any p ∈ W ◦
i has multiplicity m at σi(p),

(3) the Wi are irreducible, the structure maps πi : Wi → S are projective, and

(4) the fibers over all the W ◦
i give all irreducible curves that have multiplicity m at the marked

point.

Proof. By assumption, there is a bimeromorphic morphism r : Y → X such that Y is projective
over S.

Y X

S

r

f g

By Lemma, the Barlet-Chow cycle space of curves with marked points on Y/S exists (denote it
Chow1

1(Y/S)) and its irreducible components Wi are projective over S. The universal family

C → Chow1
1(Y/S),

parameterize all pointed curves on Y in the fiber direction. Let W be any irreducible component
of Chow1

1(Y/S), We restrict the universal family on that component CY → W .

We then map back the family of curves on Y :
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CY W ×S Y

W

wY σY

to family of curves on X:

C W ×S X

W

w σ

(Note that the family w : C → W is no longer flat, as curves on the fibers can be contracted by
Y → X).

However, it’s still proper flat over some dense Zariski open subset W o ⊂ W . Since the family is flat
over W o, by Lemma 3.4, the multiplicity of a fiber Cw at the section s is an upper semi-continuous
function on W ◦. For each m ∈ N, let Wm ⊂ W be the closure of the set of points p ∈ W ◦ for
which multσ(p)Cp = m. Since the restriction of a projective morphism over closed subvariety is still
projective, Wm → S is a projective morphism.

We finally going back to the original Moishezon morphism g : X → S. Let X◦ ⊂ X be the largest
open set over which r : Y → X is an isomorphism. The above procedure gives all irreducible
pointed curves that have nonempty intersection with X◦. Equivalently, all curves with a marked
point that are not contained in X\X◦. We can now use dimension induction (Note that by the
result we proved in the first time the restriction X \X0 → S is a Moishezon morphism, so that we
can repeat the same argument). And we can get countably many families of pointed curves that
approximate the Chow-Barlet 1-cycle space with 1-marked point.

4 Projectivity of very general fibers

We can now prove the following theorem, which is the key step in deducing the main result.

Theorem 4.1 (Projectivity of very general fibers, [Kol22, Proposition 14]). Let g : X → S be a
proper morphism of complex analytic spaces and S∗ ⊂ S a dense, Zariski open subset such that g
is flat over S∗. Assume that
(1) X0 is projective for some 0 ∈ S,
(2) the fibers Xs have rational singularities for s ∈ S∗, and
(3) g is bimeromorphic to a projective morphism gp : Xp → S.

Then there is a Euclidean open neighborhood 0 ∈ U ⊂ S and countably many nowhere dense,
closed, analytic subsets {Hj ⊂ U : j ∈ J}, such that Xs is projective for every s ∈ U\ ∪j Hj .

Proof. First choose 0 ∈ U ⊂ S such that XU retracts to X0. Since X0 is projective, it carries
an ample line bundle L. Let Θ ∈ H2 (XU ,Q) be the pull-back of c1(L) to XU . Note that Θ is a
topological cohomology class that is usually not the Chern class of a holomorpic line bundle. Let
(Cs, ps) be any marked curve on the fiber Xs for 0 ̸= s ∈ U .
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Using Theorem 3.5, we can find countable many families of pointed curves, with projective mor-
phisms πi : Wi → U .

Ci Wi ×S X

Wi

wi σi

Let J ⊂ I be the index such that Hi := πi(Wi) ⊂ U for i ∈ J is nowhere dense in U . Therefore,
πi : Wi → U for i ∈ I \J will dominant U . Since πi is projective, in particular it implies 0 ∈ πi(Wi)
for i ∈ I \ J .

Let s ∈ U \ ∪j∈JHj , then by definition of J , there is an i ∈ I\J , such that the following conditions
hold.

(a) (Cs, ps) is one of the fibers of wi over W
◦
i ,

(b) multσi(p)Cp = m for all p ∈ W ◦
i , and

(c) πi : Wi → U is projective and its image contains 0, s ∈ S (say πi(0) = 0, πi(w) = s)

Since Wi is irreducible, there exist a holomorphic curve τ : ∆ → Wi connecting the point 0, w (with
τ(0) = 0, τ(1) = w and the radius of r(∆) > 1). We then pull the family back to the disc

w : C → ∆,

with section σ : ∆ → C. Note that

multσ(t) Ct = multσ(1) C1 = multσi(s)Cis for all t ∈ ∆∗,

since τ(∆∗) ⊂ W o
i . On the other hand, by the Lemma 3.4, we have

multσ(0) C0 ≥ multσ(t) Ct = multσi(s)(Ci)s, for t ∈ ∆∗.

(Here the pull back family C → ∆ is flat, since the base is a disc and a surjective holomorphic map
from reduced irreducible space to a disc is automatically flat).

Since C0 is a 1-cycle on the projective X0, and Θ0 = Θ|X0 is the Chern class of an ample line bundle
on X0. Thus

Θ ∩ [C0] ≥ ϵ ·multσ(0) C0.

by the easy direction of Theorem 2.9, where ϵ depends only on X0 and Θ0.

Since C0 and C1 lie in the same irreducible component of Chow-Barlet cycle space, they are algebraic
equivalent. Thus the cup product with Θ remain the same. Putting these together gives that

Θs ∩ [Cs] = Θ ∩ [C1] = Θ ∩ [C0] ≥ ϵ ·multp0 C0 ≥ ϵ ·multps Cs

Thus Xs is projective by another direction of Theorem 2.9.
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5 From locally projective to global projective

Lemma 5.1 (Trivialization of the monodromy after finite base change). Let X be a connected
complex analytic variety. Let L be a local system with finite monodromy defined on X. Then
there exisfts a finite covering π : X ′ → X such that the pull back local system π∗L becomes trivial.

Proof. Let
ρ : π1(X,x0) → GLn(L),

be the monodromy representation, with L be the fiber of the local system at the reference point
x0 ∈ X. Since the monodromy of L is finite, so that

ker ρ ⊂ π1(X,x0),

is a finite index normal subgroup. Thus by the Galois correspondence, we can find a finite cover

π : X ′ → X,

such that the fundamental group π∗(π1(X
′, x′0)) = ker ρ ⊂ π1(X,x0) with π(x′0) = x0. On the other

hand, we have the following base change diagram for the monodromy representation.

π1(X
′, x′0) π1(X,x0)

GL(L) GL(L)

π∗

ρ′ ρ

=

so that the monodromy of ρ′ : π1(X
′, x′0) → GL(L) is clearly trivial.

Lemma 5.2. Let g : X → Y/S be a proper contraction morphism defined over S. The induced
pull back map on the Néron-Sever group and N1 space

g∗ : NS(Y/S) → NS(X/S), g∗ : N1(Y/S) → N1(X/S),

are injective.

Proposition 5.3. Assume that g : X → S be a proper Moishezon morphism of normal irreducible
analytic spaces. Assume that there exists a dense Zariski open subset So ⊂ S such that X is locally
projective over So then it’s actually global projective.

Proof. By passing to a Zariski open subset, we may assume that R2g∗OX is locally free, and
R2g∗ZX is locally constant. Thus by Proposition ?? and Lemma 5.2, after finite base change the
Neron-Sever local system becomes trivial local system, i.e. the locally defined ample line bundle

Li ∈ NS(X/S)(Ui) = NS(X/S)(S),

defines a global line bundle.
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6 Kollár’s projective stratification theorem

Now we can prove the main theorem of this note.

Theorem 6.1 (Projective Stratification, [Kol22, Theorem 2]). Let g : X → S be a proper Moishe-
zon morphism of complex analytic spaces and S∗ ⊂ S a dense, Zariski open subset such that g is
flat over S∗. Assume that

(1) X0 is projective for some 0 ∈ S,

(2) the fibers Xs have rational singularities for s ∈ S∗.

Then there is a Zariski open neighborhood 0 ∈ U ⊂ S and a locally closed, Zariski stratification
U ∩ S∗ = ∪iSi such that each

g|Xi
: Xi := g−1 (Si) → Si is projective.

Proof. By Theorem 4.1, we know that PRS(X) contains the complement of a countable union of
Zariski closed, nowhere dense subsets. By the Baire category theorem, PRS(X) is not contained in
a countable union of closed, nowhere dense subsets. And by the alternating property of projective
locus that we proved in the previous note, we are in the case that g : X → So is locally projective
over a dense, Zariski open subset S◦ ⊂ S.

Since the morphism is Moishezon, therefore by [Kol22, Complement 18], the morphism g : X → S is
global projective over So. And we repeat the process on S \So gives the stratification of g : X → S
into projective morphisms g|Xi : Xi = g−1(Si) → Si.

7 Claudon-Höring’s projectivity criterion for Kähler morphisms

In this section, we introduce the following projectivity criterion for Kähler morphism.

Theorem 7.1 ([CH24, Theorem 3.1]). Let f : X → Y be a fibration between normal compact
Kähler spaces. Assume that X has strongly Q-factorial KLT singularities. Assume one of the
following:
(1) The normal space Y has klt singularities and the natural map

f∗ : H0
(
Y,Ω

[2]
Y

)
−→ H0

(
X,Ω

[2]
X

)
is an isomorphism.
(2) The morphism f is Moishezon.

Then f is a projective morphism.

Proof. We will discuss this in the next note.

Final words, Projectivity of moduli has been systematic studied by Kollár in the 1990’s. For readers
who want to know more about this direction, please refer to [Kol90].
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Mathématique de France, Paris, 2019, pp. xi+533.
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