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1 Overview

The aim of this note is twofold.

(1) We summarize several projectivity criteria for Moishezon varieties. These include the singu-
lar version of Kodaira’s projectivity criterion, the Nakai-Moishezon criterion, Seshadri’s criterion,
Kleiman’s ampleness criterion, and a projectivity criterion for Moishezon morphisms as developed
in [CH24].

(2) We discuss the projective stratification theorem. The ultimate goal is to complete the proof of
the following result.

Theorem 1.1 ([Kol22, Theorem 2]). Let g : X — S be a proper Moishezon morphism of complex
analytic spaces and S* C S a dense, Zariski open subset such that ¢ is flat over S*. Assume that
X is projective for some 0 € S, and the fibers X have rational singularities for s € S*.

Then there is a Zariski open neighborhood 0 € U C S and a locally closed, Zariski stratification
U N S* =U;S; such that each g|Xl_ : X; = g1 (S;) — S; is projective.
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2 Projectivity critera

In this section, we summarize some projectivity criteria related to Moishezon varieties.

2.1 Kodaira’s projectivity criterion

Proposition 2.1. Let X be a compact Kihler variety with rational singularities such that H? (X, Ox) =
0, then X is projective.

Proof. Take the resolution v : X’ — X, where X’ is a Kéhler manifold. Since X has rational
singularity, R'v,Oxs = 0 for 4 > 0. Thus, by the Leray spectral sequence argument, H?(X,Ox) =
H?(X' ,Ox/) = 0 and therefore by Kodaira’s projectivity criterion for smooth manifolds, X’ is
projective. And therefore X is a Kahler Moishezon variety with rational singularity. By the result
we proved in the first time, X is a projective variety. O

2.2 Nakai-Moishezon ampleness critera

Proposition 2.2 ([K0l90, Theorem 3.11]). Let X be a proper Moishezon space over C and let H
be a line bundle on X. Then H is ample on X if an only if for every irreducible closed subspace
Z C X, the intersection product H1™(Z) . 7 is positive.

2.3 Seshadri criterion line bundle version

Seshadri constant was first introduced by Demailly in the early 90s, when he studied Fujita’s
conjecture.

Conjecture 2.3. Let X be a smooth projective variety of dimension n, with L being ample. Then
(a) Kx + (n+ 1)L is global generated,
(b) Kx + (n+2)L is very ample.

Definition 2.4. Given a proper analytic space X and a line bundle L, the Seshari constant is

defined to be L.C
e(Loa) =l S G

He tried to reduce Fujita’s conjecture to the bound control of the Seshadri constant.

Theorem 2.5 ([Dem92]). Let X be a smooth projective variety of dimension n with L being
ample. Then the following hold.

(a) If €(L,z) > ;27 then Kx + (n+ 1)L is global generated,

(b) If (L, x) > f—fg then Kx + (n + 2)L is very ample.

For the readers who want to know more about this, please refer to [Dem92].




2.4 Seshadri criterion cohomology class version 3

Proposition 2.6 ([Kol22]). Let X be a proper Moishezon space, and D a divisor on X (the same
also true for @Q, R dvisor). Then D is ample if and only if there exists a positive number £ > 0

such that
(D-C)
> €

mult ,C —

for every point x € X and every irreducible curve C' C X passing through z.

2.4 Seshadri criterion cohomology class version

Lemma 2.7. Let X be a normal compact Moishezon variety. Then the canonical map
®: NYX)— Ni(X)Y, [D]~ Ap
is an isomorphism. Here we define
Ap:Ni(X)—R, [T]—T-D.
Remark 2.8. For Fujiki varieties with rational singularity the result is also true:
Let X be a normal compact Fujiki variety with rational singularity. Then the canonical map
d:NYX) = N(X)Y, wre Ay
is an isomorphism. Here we define
Aot N1(X) =R, [T T(w).

Here
NY(X) := Hgh(X),

and Nj(X) to be the vector space of real closed currents of bidimension (1, 1) modulo the following
equivalence relation: 77 = T5 if and only if

Ti(n) = Tz(n),
for all real closed (1,1)-forms n with local potentials.

Proposition 2.9 ([Kol22]). Let X be a proper Moishezon space over C with rational singularities.
Then X is projective iff there is a cohomology class © € H?(X,Q) and an € > 0 such that

©N[C] > e-mult,C

for every integral curve C' C X and every p € C.

Proof. Note that the cup product induce a Q-bilinear form
(-)N (=) : H*(X,Q) x H2(X,Q) = Q,

which will induce a Q-linear functional on Hy(X,Q). If C — [C] gives an injection N1 (X, Q) —
H>(X,Q), then we can view C — O N [C] as a Q-linear map

on (—) : Nl(X,Q) — Q




2.5 Klieman’s ampleness criterion for Moishezon spaces 4

By the previous lemma, © N (—) lies in the dual space N'(X,Q). And line bundles span the dual
space of Ni(X,Q). So there is a line bundle L on X and an m > 0 such that deg (L|,) = m-©N[C]
for every integral curve C' C X. Thus

deg (L|o) =m -0 NI[C] > me-mult, C,

for every integral curve C' C X and every p € C. Then L is ample by the line bundle version
Seshadri criterion. Therefore X is projective.

Note C' — [C] gives an injection N1(X,Q) — Hy(X(C),Q) if X has l-rational singularities has
been discussed in the first note. ]

2.5 Klieman’s ampleness criterion for Moishezon spaces

Proposition 2.10 ([VP21]). Suppose that Y is a Moishezon space with Q-factorial, log terminal
singularities and that L is a Cartier divisor on Y. Then L is ample if and only if L has positive
degree on every irreducible curve on Y and L induces a strictly positive function on NE(Y").

Remark 2.11. It remains open if the result is still true without the Q-factorial KLT assumption.

Proof. The proof require the study of rational curves on Moishezon spaces, we will prove it in the
next note. [

3 Approximation of the Chow-Barlet 1-cycle space

In this section, we will introduce the main technical tool: Chow-Barlet cycle space. We will proved
that one can approximate the Chow-Barlet 1-cycle space using countable many families of marked
curves, which is crucial for the proof of result Theorem 6.1.

Definition 3.1 (Chow functor with m-marked points, [[K0l96, Definition 1.3.20]). Let X be an
analytic space over S. Let

Well defined families of nonnegative,
Chow,,(X/S)(Z) = proper, algebraic cycles C of X xg Z/Z,
Sly-veySm: 4 — X,s8i(2) €C, forall z€ Z

We call the data in the bracket the Chow data with m-marked points. We say C' is a pointed curve
if it is a l-cycle that has one marked point. And we denote the Barlet-Chow 1-cycle space with
l-marked point Chow1(X/S).

Lemma 3.2 (Representative of the Chow functor with marked points). Let X — S be a proper
morphism between complex analytic spaces. The relative Chow functor with m-marked points is
representable by a complex analytic space Chow,, (X/S).

Proof. Since the proof does not appear in the standard references, for the completeness we add a
proof here. We claim that Chow functor with marked points is actually represented by a closed




subspace of the original Chow-Barlet cycle space (we call this closed subspace incident complex
subspace). Let
U — Chow(X/95),

be the universal family of the Barlet-Chow cycle space (with & C X xg Chow(X/S) as closed
complex subspace). We then define the m-fold fiber product to be XM = X xg X xg...xgX.

m-times

Let P = Chow(X/S) xg X (™), the incident complex subspace is defined to be
Chow,, (X/S) =1 ={(s,z1,....,xm) € P | x; € U, for all i}.
We claim that I C P is a closed complex subspace. Indeed, we have the natural projective
pi: P — Chow(X/S) xs X, (c,21,...,2m) — (¢, x;),

and easy to check that the incidence variety can be represented as
m
-1
I = ﬂpz’ (U) ’
i=1

since U is closed complex subspace in X x g Chow(X/S), and therefore as a finite intersection I is
a closed complex subspace in P.

We then show that I is the representative of the Chow functor with marked points that is
Homg(T, I) ~ Chow,,(X/S)(T).

To see this, we first show that given a S-morphism 7" — I/S it will induce a Chow data with
marked points over S. Indeed, since I € Chow(X/S) xg X(™), so that the first projection

m : T — I — Chow(X/S),

will induce a family over T" via pull back. And the second projection

O‘i:ﬂ'zyilT—)I%X,
will defines the section we want. Conversely, given the Chow data (Z,01,...,0,,) with marked
point, it will induce a morphism. To see this, by the representative of the standard Chow functor,
we know that there exists a morphism ¢z : T — Chow(X/S) such that Z — T is the pull back
family, with m-sections o; : T — X (™). It is easy to check that the induced morphism actually
maps into I,

¢z xo;: T —1CRP.

The following upper semi-continuity result is needed in the proof.

Lemma 3.3 (upper semi-continuity of the multiplicities, [BM19, Proposition 4.3.10]). Let (X;)
be an analytic family of n-cycles of a complex space M. Then the function

sES

S x M — N, (s,z) — mult, (X;)

is upper semicontinuous in the Zariski topology of S x M.




Proof. The proof of the lemma is a bit complicated and we omit it here. O

Remark 3.4. In particular, let f : X — S be a proper flat morphism of relative dimension 1,
assume that there is a holomorphic section ¢ : S — X. Then the multiplicity

mult : S = Z, s+ mult,yH)Xs
is Zariski upper-semicontinuous.
Proof. Since the fibers { X} clearly forms an anlytic family of cycles in X. Since the section map
o : 5 — X is holomorphic,
S —=8SxX =N, s (s,0(s))— multys)Xs,
is upper semi-continuous. ]

Theorem 3.5 (Approximation Chow-Barlet 1-cycle space, [Kol22]). Let g : X — S be a proper
morphism of complex analytic spaces that is bimeromorphic to a projective morphism. Fix m € N.
Then there are countably many diagrams of complex analytic spaces over .S,

CZ' — WZ‘ XSX

wiﬂai
Wi

indexed by i € I, such that

(1) the w; : C; — W; are proper, of pure relative dimension 1 and flat over a dense, Zariski open
subset W C W;,

(2) the fiber of w; over any p € W has multiplicity m at o;(p),
(3) the Wj; are irreducible, the structure maps m; : W; — S are projective, and
(4) the fibers over all the W, give all irreducible curves that have multiplicity m at the marked

point.

Proof. By assumption, there is a bimeromorphic morphism r : ¥ — X such that Y is projective
over S.

By Lemma, the Barlet-Chow cycle space of curves with marked points on Y/S exists (denote it
Chow}(Y/S)) and its irreducible components W; are projective over S. The universal family

C — Chowi(Y/9),

parameterize all pointed curves on Y in the fiber direction. Let W be any irreducible component
of Chow}(Y/S), We restrict the universal family on that component CY — .

We then map back the family of curves on Y:




CY — 5 WxgY

wyl Tay
w
to family of curves on X:

C—— WxgX

wga

(Note that the family w : C — W is no longer flat, as curves on the fibers can be contracted by
Y - X).

However, it’s still proper flat over some dense Zariski open subset W° C W. Since the family is flat
over W°, by Lemma 3.4, the multiplicity of a fiber (', at the section s is an upper semi-continuous
function on W°. For each m € N, let W™ C W be the closure of the set of points p € W*° for
which mult,,)Cp, = m. Since the restriction of a projective morphism over closed subvariety is still
projective, W™ — S is a projective morphism.

We finally going back to the original Moishezon morphism g : X — S. Let X° C X be the largest
open set over which r : ¥ — X is an isomorphism. The above procedure gives all irreducible
pointed curves that have nonempty intersection with X°. Equivalently, all curves with a marked
point that are not contained in X\X°. We can now use dimension induction (Note that by the
result we proved in the first time the restriction X \ X° — S is a Moishezon morphism, so that we
can repeat the same argument). And we can get countably many families of pointed curves that
approximate the Chow-Barlet 1-cycle space with 1-marked point. ]

4 Projectivity of very general fibers

We can now prove the following theorem, which is the key step in deducing the main result.

Theorem 4.1 (Projectivity of very general fibers, [K0l22, Proposition 14]). Let g : X — S be a
proper morphism of complex analytic spaces and S* C S a dense, Zariski open subset such that g
is flat over S*. Assume that

(1) Xy is projective for some 0 € S,

(2) the fibers X have rational singularities for s € S*, and

(3) g is bimeromorphic to a projective morphism gP : XP — S.

Then there is a Euclidean open neighborhood 0 € U C S and countably many nowhere dense,
closed, analytic subsets {H; C U : j € J}, such that X is projective for every s € U\ U; H;.

Proof. First choose 0 € U C S such that Xy retracts to Xg. Since Xy is projective, it carries
an ample line bundle L. Let © € H? (Xy, Q) be the pull-back of ¢1(L) to Xy. Note that © is a
topological cohomology class that is usually not the Chern class of a holomorpic line bundle. Let
(Cs, ps) be any marked curve on the fiber X, for 0 # s € U.




Using Theorem 3.5, we can find countable many families of pointed curves, with projective mor-
phisms m; : W; — U.

Cz“—>VV¢><5X

wilTU i
W;

Let J C I be the index such that H; := m;(W;) C U for i € J is nowhere dense in U. Therefore,
i Wi — U for ¢ € I'\ J will dominant U. Since 7; is projective, in particular it implies 0 € 7;(W;)
forie I\ J.

Let s € U\ UjesHj, then by definition of J, there is an ¢ € I'\J, such that the following conditions
hold.

(a) (Cs,ps) is one of the fibers of w; over W7,
(b) mult,,)Cp = m for all p € W7, and
(¢) m : W; — U is projective and its image contains 0,s € S (say m;(0) = 0, m;(w) = s)

Since W; is irreducible, there exist a holomorphic curve 7 : A — W; connecting the point 0, w (with
7(0) = 0,7(1) = w and the radius of r(A) > 1). We then pull the family back to the disc

w:C — A,
with section o : A — C. Note that
mult, () Cp = mult, ;) C1 = mult,, () Cys for all £ € A,
since 7(A*) C W£. On the other hand, by the Lemma 3.4, we have

multa(o) Co > multg(t) Cy = mult, (s)(Ci)S) for t € A*.

i

(Here the pull back family C — A is flat, since the base is a disc and a surjective holomorphic map
from reduced irreducible space to a disc is automatically flat).

Since Cy is a 1-cycle on the projective Xy, and ©g = O|x, is the Chern class of an ample line bundle
on Xg. Thus
en [Co] > € multa(o) Co.

by the easy direction of Theorem 2.9, where € depends only on Xy and ©g.

Since Cy and C; lie in the same irreducible component of Chow-Barlet cycle space, they are algebraic
equivalent. Thus the cup product with © remain the same. Putting these together gives that

O,N[Cs] =0 N[C1] =0N|[C > e multy, Co > € mult,, C;

Thus X is projective by another direction of Theorem 2.9. O




5 From locally projective to global projective

Lemma 5.1 (Trivialization of the monodromy after finite base change). Let X be a connected
complex analytic variety. Let £ be a local system with finite monodromy defined on X. Then
there exisfts a finite covering 7 : X’ — X such that the pull back local system 7*.% becomes trivial.

Proof. Let
p:m(X,z9) = GL, (L),

be the monodromy representation, with L be the fiber of the local system at the reference point
o € X. Since the monodromy of % is finite, so that

kerp - 7Tl()(a ZEO)a
is a finite index normal subgroup. Thus by the Galois correspondence, we can find a finite cover
7: X — X,

such that the fundamental group . (m1 (X', z())) = ker p C m1 (X, zo) with 7(z(,) = 9. On the other
hand, we have the following base change diagram for the monodromy representation.

m (X', z() s m (X, z0)

7| Js
GL(L) ———— GL(L)
so that the monodromy of p’ : w1 (X', z()) — GL(L) is clearly trivial. O

Lemma 5.2. Let g : X — Y/S be a proper contraction morphism defined over S. The induced
pull back map on the Néron-Sever group and N'! space

g* :NS(Y/S) — NS(X/S), ¢*:NYY/S)— N'(X/9),
are injective.

Proposition 5.3. Assume that g : X — S be a proper Moishezon morphism of normal irreducible
analytic spaces. Assume that there exists a dense Zariski open subset S° C S such that X is locally
projective over S° then it’s actually global projective.

Proof. By passing to a Zariski open subset, we may assume that R%g,Ox is locally free, and
R?¢,.Zx is locally constant. Thus by Proposition ?? and Lemma 5.2, after finite base change the
Neron-Sever local system becomes trivial local system, i.e. the locally defined ample line bundle

Li € NS(X/S)(Us) = NS(X/S5)(5),

defines a global line bundle. O
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6 Kollar’s projective stratification theorem

Now we can prove the main theorem of this note.

Theorem 6.1 (Projective Stratification, [[Kol22, Theorem 2]). Let g : X — S be a proper Moishe-
zon morphism of complex analytic spaces and S* C S a dense, Zariski open subset such that g is
flat over S*. Assume that

(1) Xy is projective for some 0 € S,
(2) the fibers X have rational singularities for s € S*.

Then there is a Zariski open neighborhood 0 € U C S and a locally closed, Zariski stratification
UnNS* =U;S; such that each

9lx, + Xi = g1 (S;) = S; is projective.

Proof. By Theorem 4.1, we know that PRg(X) contains the complement of a countable union of
Zariski closed, nowhere dense subsets. By the Baire category theorem, PRg(X) is not contained in
a countable union of closed, nowhere dense subsets. And by the alternating property of projective
locus that we proved in the previous note, we are in the case that g : X — 5 is locally projective
over a dense, Zariski open subset S° C S.

Since the morphism is Moishezon, therefore by [K0l22, Complement 18], the morphism g : X — S'is
global projective over S°. And we repeat the process on S\ S° gives the stratification of g : X — S
into projective morphisms g|x, : X; = g~ 1(S;) — S;. O

7 Claudon-Horing’s projectivity criterion for Kahler morphisms

In this section, we introduce the following projectivity criterion for Kéhler morphism.

Theorem 7.1 ([CH24, Theorem 3.1]). Let f : X — Y be a fibration between normal compact
Kahler spaces. Assume that X has strongly Q-factorial KLT singularities. Assume one of the
following:

(1) The normal space Y has klt singularities and the natural map

;oo (v o) — e (x,08)

is an isomorphism.
(2) The morphism f is Moishezon.

Then f is a projective morphism.
Proof. We will discuss this in the next note. O

Final words, Projectivity of moduli has been systematic studied by Kollar in the 1990’s. For readers
who want to know more about this direction, please refer to [Kol90].
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