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Yi Li

The aim of this not is to give an introduction to the rational curves on Moishezon spaces. The
major references are [Kol22], [VP21], [McK17].
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1 BDPP theorem on Moishezon spaces

The first topic that we will discussed is the BDPP theorem for Moishezon space. Let us first recall
the classical BDPP theorem for projective manifolds.

Proposition 1.1. Let X be a projective manifold, then the canonical class KX is pseudo-effective
if and only if X is not uniruled.

Theorem 1.2. Let X be a compact Moishezon manifold, then the canonical class KX is pseudo-
effective if and only if X is not uniruled.

Proof. Take a projective resolution
π : Y → X,

with X being a projective manifold. By the ramification formula, we know that

π∗KX + E = KY ,

for some E ≥ 0. And therefore KX is pseudo-effective iff KY is pseudo-effective. Since being
uniruled is birational invariant, and thus the BDPP theorem for Moishezon manifold immediate
followed by the BDPP theorem for projective manifold.

It’s worth mentioning that Professor Ou recently complete the proof of the BDPP conjecture for
compact Kähler manifold.
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Theorem 1.3 ([Ou25]). Let X be a compact Kähler manifold. Then the canonical class KX is
pseudoeffective if and only if X is not uniruled (i.e. not covered by rational curves).

His proof uses some algebrac criterion for foliation, which is another story that we will not follow
here.

2 Minimal model theory over a Moishezon base

In this section, we introduce the minimal model theory over Moishezon base, developed by Paz
[VP21]. (It’s worth mentioning that Fujino’s [Fuj22] proved much stronger result where the base
is not necessary a Moishezon variety, I also recommend the paper that systematically study it
[LM23]). From the proof, we can see that one of the reason to introduce the Moishezon varieties
and Moishezon spaces are this category allow us to do some cut and paste operations like the
topology. To be more precise we have the following lemmata about the gluing of MMP and base
change of MMP over a Moishezon base.

Definition 2.1 (The r-th output of MMP). We need to clarify the following termilogy that is
useful in the proof of the main theorem.

The r-th output of MMP in what follows is different from the r-th step of MMP in usual sense.
Here the rth output of the g-relative D-MMP with scaling of H, denoted by f r : X 99K Xr, will
mean the composite X 99K Xr1 99K · · · 99K Xrn for numbers r1 > · · · > rn ≥ r, where each ri is
such that
(1) Dri−1 + riH

ri−1 is nef, but not ample, over Y , (as usual MMP with scaling)
(2) Dri−1 + (ri + ϵ)Hri−1 is ample over Y , and
(3) Drn + (r − ϵ)Hrn is ample over Y , where ϵ > 0 is sufficiently small.

And note that differ from r-th MMP defined as integer number, the r-th output of MMP here can
be some real number.

Lemma 2.2 (MMP over a Moishezon base can be lifted). Let X be normal Moishezon variety,
Y be a normal irreducible Moishezon variety and V be a normal complex space. Assume that
π : V → X be a universal open and quasi-finite morphism, g : X → Y be a projective morphism.
Then it is possible to take the base change.

XV = (X ×Y V )ν V

X Y

gV

πV π

g

We then run the

If Xr exists, then (XV )
r exists and (XV )

r ∼= (Xr ×Y V )ν ;

Lemma 2.3 (MMP over Moishezon base can glue). Suppose {Yj} is an open cover for Y . For
each index j, define Xj = X ×Y Yj = g−1 (Yj) , gj = g|Xj

: Xj → Yj , Dj = D|Yj , and Hj = H|Yj .
Suppose that for each j we know the existence of the rth output Xj −→ (Xj)

r of the Dj −MMP
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with scaling of Hj over Yj . Then the rth output X → Xr of the D-MMP with scaling of H over
Y exists.

Proof.

Lemma 2.4 (MMP over a Moishezon base descend). The same setting as Lemma 2.2.If π : V → Y
is surjective. If (XV )

r exists, then Xr exists and (XV )
r ∼= (Xr ×Y V )ν .

Proof.

Proposition 2.5 ([VP21]). Suppose g : (X,Θ) → (Y,∆) is a projective morphism of algebraic
spaces of finite type over a field of characteristic 0 , where (X,Θ) is Q-factorial and dlt.

(2)Suppose that g has exceptional divisor E = E1 + · · ·+ En and that KX +Θ ∼g,R EΘ = ΣejEj
for some numbers ej ≥ 0.

(3) Finally, suppose that H is a divisor on X, such that KX +Θ+ cH is g-ample for some number
c.

Then we may run the g-relative (KX +Θ)-MMP with scaling of H.

Proof.

3 Projectivity criterion for Moishezon space using rational curves

Proposition 3.1. Let f : Y → X be a small bimeromorphic projective morphism of analytic
varieties such that X is Q-factorial. Then f is an isomorphism.

Remark 3.2. Note that the projective assumption is ncessary here.

Proposition 3.3 ([VP21]). Suppose that ψ : (Y,∆) → U is a proper morphism of normal algebraic
spaces of finite type over a field k of characteristic 0 and that (Y,∆) has KLT singularities. If ψ is
non-projective, then
(1) either Y contains a rational curve C such that ψ(C) is a point and −[C] ∈ NE(Y/U),
(2) or Y has a small, Q-factorial modification Y qf that is projective over U (more precisely, the
composite morphism Y qf → Y → U is projective).

Before proving the theorem let us make a remark. By Nakai-Moishezon ampleness criterion, the
Mori cone is a pointed closed convex cone. Thus the condition −[C] ∈ NE(Y/U) means that the
rational curve is numerical trivial.

Proof. We first find a log resolution g : X → (Y,∆), such that X is projective over U . Write
E = E1 + · · · + En for the exceptional divisor of g. We can write KX + F1 = g⋆ (KY +∆) + F2,
where F1, F2 are effective and F2 is g-exceptional. Since (Y,∆) is klt, then the coefficients of F1

are all less than 1 . For 0 < η ≪ 1, the coefficients of F1 + ηE are still less than 1 . Choose such a
value of η, and let Θ = F1 + ηE. Then we have KX +Θ ∼g,R EΘ, where EΘ = F2 + ηE is effective
and Supp (EΘ) = Ex(g).
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With this choice of Θ, the pair ( X,Θ ) is klt. Now choose a divisor A, sufficiently ample over
U, such that Supp(A) ∪ Supp(Θ) is an snc divisor, and such that KX+ Θ + cA is ample over Y ,
where 0 < c < 1 is sufficiently general. We may pick such a divisor by Bertini’s Theorem. Note
that this choice of A implies that the pair ( X,Θ+ cA ) is klt. Next, we perturb cA as follows: for
every divisor class in some basis for NS(X), we pick a divisor representing that class and we add a
sufficiently small, sufficiently general multiple of it to cA. Call the resulting divisor H. With these
choices, we can arrange that KX + Θ +H is ample over Y, (X,Θ +H) is klt, and the coefficients
of H are linearly independent over Q (e1, . . . , en), where e1, . . . , en are the coefficients of EΘ.

We now run the relative (KX +Θ)-MMP with scaling of H over Y , whose steps exist and terminate
by Theorem 2.6. Since ( X,Θ ) is klt, then this MMP terminates in a klt pair ( Xmin,Θmin )
projective over Y . Since Y is klt, then by Theorem 3.52 in [32], Xmin is a small modification of Y .
Note that our choice of X was smooth, and hence Q-factorial. Since each step of this MMP comes
from the contraction of an extremal ray, then Xmin is still Q-factorial. If Xmin is projective over
U , then Xmin is the claimed small, Q-factorial modification of Y that is projective over U .

Otherwise, along the course of the MMP described above, there is a first step Xr −− → Xr′ , such
that Xr is projective over U but Xr′ is not. We will focus on this MMP step; this is not necessarily
the first step where the relative MMPs over Y and

over U deviate from each other. We emphasise that this is where our approach differs from that of
[47] and [6].

Note first that since KX + Θ + H is ample over U , then in particular it is relatively ample, and
therefore the index r1 corresponding to the first step in this MMP satisfies r1 < 1. SinceX is smooth
(and hence Q-factorial), then (X,Θ+ r1H) is klt. Additionally, after we do the first MMP step,
the output ( Xr1 ,Θr1 + r1H

r1 ) remains klt. This step arises from the contraction of an extremal
ray in the cone of curves, so Xr1 is still Q-factorial. Since the next index, say r2, is smaller than r1
and Xr1 is Q-factorial, then in fact (Xr1 ,Θr1 + r2H

r1) is klt.Inductively, we see that right before
we do the MMP step Xr → Xr′ that loses projectivity over U , we have a klt pair (Xr,Θr + r′Hr)
projective over U . Since Xr is Q-factorial, we can actually conclude that (Xr,Θr + (r′ − ϵ)Hr) is
klt for 0 < ϵ ≪ 1. By Lemma 3.3.1, this MMP step arises from the contraction of some extremal
ray R in NE (Xr/Y ). Let F be the minimal extremal face of the larger cone of curves NE (Xr/U)
that contains R. We have two possibilities to consider:

First, suppose that F is itself a ray. If F contains only curves whose images in Y are points, then
our step of the relative MMP over Y is actually a step of the relative MMP over U . However, the
steps of the MMP over U preserve projectivity over U . This then gives us a contradiction, because
we assumed that Xr′ is not projective U . It may also happen that F contains some curves whose
images in Y are curves; in other words, our step of the MMP over Y doesn’t contract every curve
in F . Then there are curves C,C ′, such that [C ′] = λ[C] in NE (Xr/U) for some λ > 0, and such
that gr(C) is a point and gr (C ′) is a curve in Y . In fact, by Corollary 1.4 in [14] applied to the
contraction morphism contF : Xr → Z over U , we can take the curves C,C ′ to be rational. This
implies that [gr (C ′)] = 0 in NE(Y/U), so certainly − [gr (C ′)] ∈ NE(Y/U).

The second possibility is that F has dimension greater than 1 . Since R is anextremal ray contracted
by a step of some MMP, then it is spanned by the class of some rational curve C, and [C] ∈ F .
Then we can write [C] =

∑
λjvj , where each vj ∈ Rj is some vector contained in an extremal ray

Rj of F , and λj ̸= 0. Here we allow the extremal rays Rj to have non-negative intersection with
the log canonical divisor, so at this point we do not know that any vj is the class of some curve in
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Xr.

We have that KXr + Θr + (r′ + ϵ)Hr is relatively ample, and (KXr +Θr + r′Hr) · C = 0. This
means that if we decrease r′, we get a negative intersection product: (KXr +Θr+ (r′ − ϵ)Hr)·C <
0, so there must exist some j0, such that (KXr +Θr + (r′ − ϵ)Hr) · vj0 < 0 for all sufficiently
small ϵ > 0. Since we know that (X,Θr + (r′ − ϵ)Hr) is klt and Rj0 is a negative extremal
ray for this pair, then by [20] this means that Rj0 = R≥0 [Cj0 ] for some rational curve Cj0 in
Xr. Replacing λj0 if necessary, we can assume that vj0 = [Cj0 ]. Letting ϵ → 0, we see that
actually (KXr +Θr + r′Hr) · Cj0 ≤ 0. Suppose for a contradiction that gr (Cj0) is a point. Then
(KXr +Θr + r′Hr) · Cj0 ≥ 0 because the divisor is relatively nef. Combining our two inequalities,
we deduce that (KXr +Θr + r′Hr) · Cj0 = 0, so that the ray Rj0 ∩NE (Xr/Y ) gets contracted by
this MMP step. This is impossible because this step contracts only the ray R. Therefore, gr (Cj0)
is a rational curve in Y , and − [gr (Cj0)] = λ−1

j0

∑
j ̸=j0 λj [g

r (vj)] ∈ NE(Y/U).

We can prove the following corollary

Proposition 3.4 ([VP21]). Suppose that ψ : Y → U a proper morphism between Moishezon
varieties, and that ∆ is some divisor on Y , such that the pair (Y,∆) has KLT singularities.

Assume additionally that Y is Q-factorial. Then ψ is non-projective if and only if Y contains a
rational curve C such that ψ(C) is a point and −[C] ∈ NE(Y/U).

Proof. If ψ : Y → U is projective, then Y carries some ψ-ample divisor A. Then A is positive on
every curve on Y that is contracted by ψ, so Y cannot contains a rational curve C such that ψ(C)
is a point and −[C] ∈ NE(Y/U).

Conversely, if ψ is non-projective, then we can run the argument in the proof of previous theorem,
we can extract all the exceptional divisor of X → Y and

X Xmin

Y

U

ψ

However, we are now assuming that Y is Q-factorial, so Y admits no non-trivial small modifications
that are projective over it. This implies that Xmin ∼= Y , so in particular Xmin is not projective
over U .

Then, there must have some step of MMP over Y that lose the projectivity, and the rational curve
comes from that step.
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4 Kleiman’s projectivity criterion

Proposition 4.1 ([VP21]). Suppose that ψ : (Y,∆) → U is a proper morphism of normal algebraic
spaces of finite type over a field k of characteristic 0 and that (Y,∆) has Q-factorial klt singularities.

Then ψ is projective if and only if there is a Cartier divisor L on Y such that L · C > 0 for every
irreducible curve C in Y such that ψ(C) is a point. ( L need not be ample over U ).

Proof. If ψ is projective, then Y contains a Cartier divisor L ample over U , so we are done.

Conversely, suppose that there is a Cartier divisor L on Y that is positive on every irreducible
curve contracted by ψ. Assume for a contradiction that ψ is not projective. By Corollary 3.4, Y
contains a rational curve C such that −[C] ∈ NE(Y ). Since the Mori cone is dual to the nef cone
for Moishezon variety, for this curve we have L · (−C) ≥ 0, which contradicts the assumption.

5 Mckernan’s Mori bend and break theorem on Moishezon spaces

This section, we will introduce the new proof of Mori bend and break on the Moishezon variety by
Mckernan.

Theorem 5.1 ([McK17, Theorem 1.1]). Let S be a proper algebraic space and let (S,Θ) be a
kawamata log terminal pair. Suppose that Θ is big.

For every point c of the stable base locus of KS +Θ there is a rational curve c ∈M ⊂ S.

Proof. Let π : X −→ S be a log resolution of (S,Θ), so that X is a smooth projective variety and
the sum of the strict transform of Θ and every exceptional divisor has global normal crossings.

As (S,Θ) is KLT, we may write

KX +∆ = π∗ (KS +Θ) + E,

where E ≥ 0 is exceptional, π∗∆ = Θ and ⌊∆⌋ = 0. In particular (X,∆) is KLT.

Adding a small multiple of the sum of the exceptional divisors to both sides, we may assume that
both the support of ∆ and the support of E contains every exceptional divisor.

In particular ∆ is big. (Since we assume that Θ is big and thus so it’s the strict transform and ∆
contains some effective divisor in it, thus ∆ is a big divisor).

Suppose first that KX +∆ is not pseudo-effective. Then KX is not pseudo-effective either,

By BDPP for projective variety implies that X is covered by curves on which KX is negative and
X is uniruled. Either way, S is uniruled. In this case there is a rational curve through every point
of S and the result is clear.

Therefore we may assume that KX +∆ is pseudo-effective. By BCHM (X,∆) has a log terminal
model, f : X 99K Y . As Γ is big, it follows that KY + Γ is semiample. And if ϕ : S 99K Y is the
induced birational map then ϕ is a log terminal model of KS +Θ.
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X Y

S
ϕ

Let Z be the indeterminancy locus of ϕ−1 : Y 99K S.

If KS + Θ is already semi-ample, then there is nothing to prove. Otherwise, by the Theorem 5.4
(Zariski-Fujita theorem). There exist a curve C contains in the stable base locus B(KS +Θ). Let
p :W → S and q :W → Y resolve the indetermancy X 99K Y . Since S 99K Y is (KS +Θ)-negative
and KY + Γ is semi-ample, by Proposition 5.3, thus C ⊂ p(q−1(Z)).

Since (Y,Γ) is KLT, the indetermancy locus Z is uniruled, thus p(q−1(Z)) is uniruled. And therefore
there exists a rational curve passing through c ∈ C.

Theorem 5.2 ([McK17, Corollary 0.2]). Let S be a Q-factorial proper algebraic space and let
(S,Θ) be a kawamata log terminal pair.

If C ⊂ S is a curve such that (KS +Θ) ·C < 0 then for every point c ∈ C there is a rational curve
c ∈M ⊂ S.

Proof. As S is birational to a projective variety there is a big divisor B ≥ 0 (a priopr it’s not clear
this is Cartier or not it’s only a rank 1 reflexive sheaf) on S. As S is Q-factorial, B is Q-Cartier.

Possibly replacing B by a small multiple, we may assume that (S,Θ+B) is KLT and (KS +Θ+B)·
C < 0.

Then Θ+B is big and C belongs to the stable base locus of KS+Θ+B. Thus, apply the Theorem
5.1, shows that there exists a rational curve.

The following result is useful in the proof of the theorem above.

Proposition 5.3. Let S and Y be proper normal algebraic spaces, let D be an R-Cartier divisor
on S and let C ⊂ S be a curve. Let ϕ : S 99K Y be a D-negative birational map.

Let p : W −→ S and q : W −→ Y be proper birational morphisms which resolve ϕ. Let Z be the
indeterminancy locus of ϕ−1.

W

S Y

p q
ϕ

Then one of the following three conditions hold.

(1) C ⊂ p
(
q−1(Z)

)
, or

(2) Every curve Σ ⊂ Y such that C ⊂ p
(
q−1(Σ)

)
belongs to the stable base locus of ϕ∗D, or

(3) C does not belong to the stable base locus of D.
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The proof is ad hoc.

Proof. Suppose that (1) and (2) do not hold. As (2) doesn’t hold, we may find a curve Σ such that
C ⊂ p

(
q−1(Σ)

)
and Σ does not belong to the stable base locus of ϕ∗D. Then we may find a divisor

0 ≤ D′ ∼R ϕ∗D

which does not contain Σ. As ϕ is D-negative,

B = ϕ∗D′ + p∗E ≥ 0

On the other hand

B = ϕ∗D′ + p∗E = p∗
(
q∗D′ + E

)
∼R p∗ (q

∗ϕ∗D + E)

= p∗p
∗D = D

Let U = Y − Z,Σ0 = Σ ∩ U,D′
0 = D′|U and π0 = ϕ−1

∣∣
U

: U −→ S. Then D′
0 does not contain

Σ0, D
′
0 ∼R π

∗
0D and moreover Σ0 dominates C, since (1) does not hold. It follows that D′

0 does not
contain π−1

0 (C). But then π0 (D
′) does not contain C. On the other hand, p∗E does not contain

C as (1) does not hold. Therefore B = ϕ∗D′ + p∗E does not contain C and so (3) holds.

Theorem 5.4 (Zariski-Fujita theorem, [Laz04, Remark 2.1.31]). Let L be a line bundle on a
projective variety X with the property that the base locus Bs(|L|) is a finite set. Then L is
semiample
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