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1 Overview

Today we will continue our discussion on the paper about Moishezon morphisms. Last time, we
proved that a Moishezon manifold admits a (strong) Hodge decomposition. We also showed that a
Kahler Moishezon space with a 1-rational singularity is automatically projective. Finally, we gave
three different definitions for a Moishezon morphism and proved that they are equivalent. This
time, we will prove the following:

1. A proper surjective morphism equipped with a relatively big line bundle is locally bimero-
morphic to a projective morphism.

2. If the base space is Moishezon, then the total space is Moishezon if and only if the morphism
is Moishezon.

3. The restriction of a generic finite surjective morphism to the exceptional set is a Moishezon
morphism.

2 Chow’s lemma, Reducing Proper Morphism to Projective Mor-
phisms

Recall that we define a morphism to be Moishezon if it’s bimeromorphic to a projective morphism:

Definition 1 (Moishezon morphism, see [4] definition (10)). Assume that S is reduced. A proper
morphism of analytic spaces g : X — S is Moishezon if g : X — S is bimeromorphic to a projective
morphism ¢gP : XP — S.

That is, there is a closed subspace Y C X x g XP such that the coordinate projections ¥ — X and
Y — XP are bimeromorphic.

For proper bimeromorphic morphism between complex analytic spaces we have the Hironaka Chow’s
lemma (we state it below without proof)
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Theorem 2 (Hironaka Chow’s lemma, see [3], Theorem 2.17 ). Let f : X — Y be a proper
bimeromorphic morphism between two complex spaces such that Y is reduced and o-compact.
Then there exists a projective bimeromorphic morphism v : X’ — X from a complex space X’ such
that the composition f' = for: X' — Y is projective.

Our main goal of this Section is to prove the following result

Theorem 3 (Reducing Proper Morphism to Projective Morphisms, [3], Lemma 2.18 ). Let f :
X — S be a proper surjective morphism of analytic varieties, and let L be a f-big line bundle on
X and D a Q-divisor.

Then over any relatively compact open subset V' C S, there exists a proper bimeromorphic mor-
phism o : W — f~'V from a smooth analytic variety W such that 3 = f|f,1v oa:W —=Visa

projective morphism and (VV, a;l <D|f,1v> + EX(a)) is a log smooth pair.

We make a remark before proving the result, [2] Lemma 2.5. states that « can be choosen to be a
projective morphism.

Proof. Let ¢ : X - Y be the relative litaka fibration of L over S and g : ¥ — S the induced
projective morphism. Since L is f-big, ¢ : X — Y is bimeromorphic. Let p: ' > X and ¢: ' = Y
be the resolution of indeterminacy of ¢ so that p is proper.

Now fix a relatively compact open subset V' C S. Choose another relatively compact open set
U C S containing V such that V C U. Note that U is o-compact, since it is relatively compact.
Since f and g are both proper morphisms, it follows that Xy := f~'U and Yy := ¢~ 'U are both
o-compact. Let I'y := ¢! (g_lU) =p! (f_lU). Then from the commutative diagram above it
follows that q]FU : Ty — ¢~ U is a proper morphism. In particular, 'y is o-compact. Note that
q|FU is bimeromorphic. Therefore by Theorem 2.17 there is a projective bimeromorphic morphism
h: Z — I'y from an analytic variety Z such that Q|FU oh:Z — Yy is a projective bimeromorphic
morphism. Since g is projective, so is Z — U.

Now we replace U by our previously fixed open set V. Then Zy := (go qo h)~!V is a relatively
compact open subset of Z. Let r : W — Zy be the log resolution of (ZV, (poh);t <D|f_1v>>

o r, where

as in Theorem 2.16. Let « := oh‘ or and f := 1y © ‘ oh
Plry h=1Ty P glo-1v o4 v p-1py,

Iy :=p! (f_lV) =q! (g_IV). Note that g is a projective morphism, since it is a componsition

of projective morphisms over relatively compact bases.

Then o : W — f~1V is a proper bimeromorpic morphism and 5 : W — V is a projective morphism
such that 8= f|;-1, o and (W, a;! <D|f*1V) + Ex(a)) is a log smooth pair.
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O]

We end this Section by comparing it with the definition of Moishezon morphism (the definition in

[4])

g“\, / A morphism equipped with a big rank 1 reflexive sheaf

[Kollar definition (10.1)] [Kollar definition (10.4)]

[} .
| require smooth so the extension
V\s again a line bundle

N ‘A A morphism equipped with big line bundle

[Claudon and Horing definition 2.1]

Das and Hacon
Lemma 2.18

Figure 1: Comparison between different definitions for Moishezon morphism

3 When the base is Moishezon then the total space is Moishezon
iff the morphism is Moishezon

Before proving the main theorem of this Section, we first summarize some analog results below

Theorem 4 (Moishezon in the fibration, see [4], [5]).

(1) Let g : X — S be a proper morphism of analytic spaces, S Moishezon. Then g is Moishezon iff
X is Moishezon.

(2) Let g : X — S be a proper morphism of analytic spaces, S projective. Then g is projective iff
X is projective.

(3) If 7 : X — Y is a Kdhler morphism, and Y a Ké&hler space then any open U CC X is Kéhler.
More precisely: If ky is a Kahler metric on Y and k, a relative Kahler metric for 7, then for any

U CC X there is a constant ¢y > 0 such that for any ¢ > co,(kr + cm*Ky) . is a Kahler metric on
U.

(Proof of (2), If the morphism is projective then the total space is projective). We will prove it us-
ing the Kleiman’s ampleness criterion, which says a divisor is relative ample iff it has positive
intersection with relative Mori cone NE(7).

Also we have proved before the relative Kleiman Mori cone is can be expressed as

NE(r) = NE(X) N («*H)*

We divide the problem into 2 cases:
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Case 1.(when a € NE(7)) In this case we can apply the relative version Kleiman cone criterion for
ample divisors. And thus
a-(mr*H+D)=a-D >0

Case 2.(when o ¢ NE(7)) In this case we have « - 7*H # 0 since « in the closure of NE(X) thus
a7 H > 0. On the other hand it’s non-zero, the only possibility is thus

a-7mH >0
Thus for sufficient large m > 0 we have
a-(mr*H+ D) >0

(here we use the finite dimension of N'(X)r so that we can choose a uniform m)

Combine these two cases, easy to see
mr*H + D

is ample for m > 0. ]

(Proof of (2), the morphism between projective varieties is projective). Consider the factorization

X—2* s XxY

T

Y
where
L X - X XY, xw—(z,f(z))
is the embedding with the image being the graph, since X,Y are projective, we have X x Y is also

projective. O

(Proof of (1), the morphism between Moishezon spaces is Moishezon). Consider the following graph
embdding:

X— X x§ ---- » XP xS
f l”%
S

where
t: X =X xS, zw—(z, f(z))

is the embedding with the image being the graph, since X is Moishezon it’s bimeromorphic to a
projective variety, clearly by the definition 7P is projective and thus 7 is Moishezon. And restriction
of the Moishezon morphism is Moishezon therefore f : X — S is Moishezon morphism. O

Finally we gave a proof that if the morphism is Moishezon then the total space is Moishezon (under
the projective assumption, see [1], Lemma 2.5)
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(Proof of (1), when the morphism is Moishezon then the total space is Moishezon). By Kodaira lemma
we have
A=F+4+H, FE >0andH is ample

now we pull back since pull back of effective Cartier divisor is still effective and sum of big divisor
and pseudo effective divisor is still big. We can assume w.l.o.g. that A is ample divisor.

Let H be g-ample on X. (Since we assume projective, there always has such divisor)

Then choose m such that
9:Ox(mN — H)

has positive rank.

Indeed By definition on generic fiber 7 the restriction N|x, is big and also H|x, is ample and thus
by the Kodaira lemma we have

h(X,,mN|x, — H|x,) >0

therefore the direct image is a locally free sheaf with positive rank.

Now choose k large enough, such that ¢.Ox(mN — H) ® Oy (kA) has a section. Indeed by Serre
vanishing theorem the sheaf is even global generated.

Thus
E:=mN — H + g*(kA)

is effective (by the projection formula),
and mN + g*(kA) = H + E is the sum of an ample and an effective line bundle, hence big.
Thus also N + g*(kA) is big for large k

4 Restriction of the proper generic finite morphism on the excep-
tional set is Moishezon

We will end today’s discussion with the following theorem

Theorem 5 (Restriction of the proper generic finite morphism on the exceptional set is Moishe-
zon,see [4] Lemma 15).

Let g : X — S be a proper, generically finite, dominant morphism of normal, complex, analytic
spaces. Then Ex(g) — S is Moishezon.

Proof. We prove the special case when the smooth locus of S is dense in g(Ex(g)). This is a harmless
assumption if S is Stein (or quasi-projective) Indeed by the Noetherian normalization, there always
exist a finite map S — C4™S when § is Stein and quasi-finite morphism S — P4™S when S is
quasi-projective. If we replace S by CI™S or P4mS jt will be special case above. Consider the
diagram
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X ——Y

~

(CdimS
Since finite lifting of Moishezon morphism is Moishezon, if X — C” is Moishezon then so will
X = 5.
Let Ey be a g-exceptional divisor. Set (go : Xo — So) := (¢ : X — S) and Zy := go (Fo)-

If g; : X; — S; and E; C X, are already defined, we set Z; := g; (F;). Let S;y+1 be the normalization
of the blow-up Bz, S;, and gi4+1 : Xi41 — Si+1 the normalization of the graph of X; — S; --» Si41.

Let F;11 C X;41 denote the bimeromorphic transform of E;. (Note that X;;1 — X, is an isomor-
phism over an open subset of Fj.)

Indeed the construction can be pictured as below

Xi+1 = (F¢)V —_—> Si+1 = (BIZiSi)V

Recall that at beginning we assume the smooth locus of S is dense in g(Ex(g)). That is by generic
smoothness if we choose some general points e € F; then it will be smooth point of X; and 5; is
also smooth around the point g(e).

Thus to compute the Jacobian we can take the Euclidean model, Let a (E;, S;) denote the vanishing
order of the Jacobian of g; along F;. By an elementary computation we get that

a (Eprl, Si+1) <a (EZ', S@) + 1 — codim (ZZ' C SZ) .
Thus eventually we reach the situation when codim (Z; C S;) = 1, indeed if codim (Z; C S;) > 2
then the Jacobian of g; along FE; will eventually goes to zero. Contradiction.

Thus by comparing the dimension we know when restrict the morphism X; — 5; to F; — Z; it will
become a generic finite morphism. Note that the morphism S;1; — 5; is composition of blow up
and normalization thus it’s projective, restrict to Z;11 — Z; is again projective. Thus we have by
the Stein factorization on FE; — Z; into

B —sw L 7
oA
Zy

Where f is finite, since E; — Z; is generic finite the contraction morphism c is bimeromorphic, and
composition W — Z; — Z; is projective, therefore E; — Z; is Moishezon and also E; — S;. O
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