PhD Dissertation Proposal Examination

Moishezon space and Moishezon morphism

Li Yi

WuHan University

December 4, 2024

Outline

Moishezon morphism

Openness of projectivity

Deformation invariance of plurigenera

Projectivity critera

Moishezon morphism

Moishezon variety

Definition (Moishezon variety)

A proper, irreducible, reduced analytic space X is Moishezon if it is bimeromorphic to a projective variety X^p .

Remark

There are several equivalent definitions:

- ▶ A proper irreducible, reduced analytic space X is Moishezon if there exist a birational modification $X^p \to X$ with X^p being projective.
- ► A Moishezon variety is a complex variety such that

$$a(X) := tr \deg_{\mathbb{C}} M(X) = \dim(X)$$

that is it has dim X number of algebraic dependent meromorphic function.

▶ A Moishezon manifold is a complex manifold that equipped with a big line bundle.

Moishezon morphism

Definition (Moishezon morphism)

Assume now that S is reduced. A proper morphism of analytic spaces $g:X\to S$ is Moishezon if $g:X\to S$ is bimeromorphic to a projective morphism $g^{\mathrm{p}}:X^{\mathrm{p}}\to S$.

Remark

The definition above is equivalent to the followings

- ▶ A proper morphism of analytic spaces $g: X \to S$ is Moishezon if There is a projective morphism of algebraic varieties $G: X \to S$ and a meromorphic $\phi_S: S \dashrightarrow S$ such that X is bimeromorphic to $X \times_S S$.
- ▶ Assume now that S is reduced. A proper morphism of analytic spaces $g: X \to S$ is Moishezon if there is a rank 1, reflexive sheaf L on X such that the natural map $X \dashrightarrow Proj_S(g_*L)$ is bimeromorphic onto the closure of its image.

Properties of Moishezon morphism

For more properties, see [Kol22a] and [Fuj83].

Theorem (Morphism on exceptional locus is Moishezon)

Let $g: X \to S$ be a proper, generically finite, dominant morphism of normal, complex, analytic spaces. Then $\mathsf{Ex}(g) \to S$ is Moishezon.

Theorem (Base change property for Moishezon morphism)

The fibers of a proper, Moishezon morphism are Moishezon.

Moishezon locus

Moishezon locus satisfies alternating property.

Theorem (Rao-Tsai 22')

Theorem 21. Let $g: X \to S$ be a smooth, proper morphism of normal, irreducible analytic spaces. Then the Moishezon locus $\mathrm{MO}_S(X) \subset S$ is (1) either contained in a countable union $\cup_i Z_i$, where $Z_i \subsetneq S$ are Zariski closed.

(2) or $MO_S(X)$ contains a dense, open subset of S. Furthermore, if $R^2g_*\mathcal{O}_X$ is torsion free then (2) can be replaced by (3) $MO_S(X) = S$ and g is locally Moishezon.

Fiberwise bimeromorphism

When the central fiber is not uniruled, we can expect the Moishezon morphism to be fiberwise bimeromorphic to a projective morphism.

Theorem (Kollár 22a', Theorem 28)

Let $g: X \to \mathbb{D}$ be a flat, proper, Moishezon morphism. Assume that X_0 has log terminal singularities and X_0 is not uniruled.

Then g is fiberwise birational to a flat, projective morphism $g^p: X^p \to \mathbb{D}$ (possibly over a smaller disc) such that

- X₀^p has log terminal singularities,
- $lackbox{X}_{s}^{\mathrm{p}}$ is not uniruled and has terminal singularities for $s \neq 0$, and
- $ightharpoonup K_{X^{\mathrm{p}}}$ is \mathbb{Q} -Cartier.

Algebraic approximation

Given a Moishezon morphism over \mathbb{D} , we can replace it by a Moishezon morphism over smooth algebraic curve (in the infinitesimal neighborhood).

Theorem (Algebraic approximation for Moishezon morphism, Kollár 22a', Proposition 37)

Let $f:X\to\mathbb{D}$ be a Moishezon morphism, with the projective modification $h:Y\to X$ over \mathbb{D} . Then we can change the diagram to a smooth algebraic curve (C,c). such that the morphism are isomorphic in the m-th order infinitesimal neighborhood of the special fiber

$$(Y \to X)_m \cong (Y_C \to X_C)_m$$
.

Inversion of adjunction

The inversion of adjunction holds for Moishezon morphism.

Theorem (Kollár 22a', Theorem 40)

Let $g:X\to\mathbb{D}$ be a flat, proper, Moishezon morphism and Δ an effective \mathbb{Q} -divisor on X. Assume that $K_X+\Delta$ is \mathbb{Q} -Cartier. Then

$$\mathsf{discrep}\left(X, X_0 + \Delta_0\right) = \ \mathit{totaldiscrep}\ \left(X_0, \Delta_0\right)$$

where on the left we use only those exceptional divisors whose centers on X have nonempty intersection with X_0 .

Openess of projectivity

Openess of projectivity

Theorem (Kollár 22b', Theorem 1)

Theorem 1. Let $g: X \to \mathbb{D}$ be a proper, flat morphism of complex analytic spaces. Assume that

- $ightharpoonup X_0$ is projective,
- the fibers X_s have rational singularities for $s \neq 0$, and
- lacktriangle g is bimeromorphic to a projective morphism $g^{\mathrm{p}}:X^{\mathrm{p}}
 ightarrow\mathbb{D}$

Then g is projective over a smaller punctured disc $\mathbb{D}^{\circ}_{\epsilon} \subset \mathbb{D}$.

Remark

- Without Moishezon assumption, the theorem above is not true.
- ► The proof use Seshadri projectivity criterion and Chow-Barlet cycle space arguement.

Deformation invariance of plurigenera

Deformation invariance of plurigenera

Theorem (Kollár 21', Theorem 1)

Theorem 1. Let $g:X\to S$ be a flat, proper morphism of complex analytic spaces. Fix a point $0\in S$ and assume that the fiber X_0 is projective, of general type, and with canonical singularities. Then there is an open neighborhood $0\in U\subset S$ such that

- ightharpoonup the plurigenera of X_s are independent of $s \in U$ for every r, and
- ▶ the fibers X_s are projective for every $s \in U$.

Remark

- The proof use the extension of MMP combined with BCHM.
- ▶ When X₀ does not have canonical singularity, or not Kaehler, the result is not necessarily true.

Projectivity critera

Conjecture (Peternell's conjecture)

Any Moishezon manifold without rational curves is projective.

Theorem (Paz 21', Corollary 1.3)

Suppose that Y is a Moishezon space with \mathbb{Q} -factorial, log terminal singularities. Then Y is non-projective if and only if it contains a rational curve C such that $-[C] \in \overline{\mathrm{NE}}(Y)$.

Remark

► The proof of Paz use MMP arguement over the Moishezon base.

Thanks for your attention!